最近突然看到一个问题,PCA和SVD有什么关系?隐约记得自己照猫画虎实现的时候PCA的时候明明用到了SVD啊,但SVD(奇异值分解)和PCA的(特征值分解)貌似差得相当远,由此钻下去搜集了一些资料,把我的一些收获总结一下,以免以后再忘记。

PCA的简单推导

PCA有两种通俗易懂的解释,

1)是最大化投影后数据的方差(让数据更分散);地址:http://www.cnblogs.com/shixisheng/p/7107363.html

2)是最小化投影造成的损失。(下边讲的就是这个方法)

这两个思路最后都能推导出同样的结果。 
下图应该是对PCA第二种解释展示得最好的一张图片了(ref:svd,pca,relation

def pca_01(X):
covMat = np.cov(X,rowvar = 0)
eigVal,eigVec = sp.linalg.eig(covMat)
#do reduction with eigVal,eigVec

但因为最后用于变换的矩阵需要是去中心化后的,所以有些地方的实现是:

def pca_02(X):
mean_ = np.mean(X, axis=0)
X = X - mean_
covMat = np.cov(X,rowvar = 0)#实际上是否去中心化对求到的协方差矩阵并无影响,只是方便后面进行降维
eigVal,eigVec = sp.linalg.eig(covMat)
#do reduction with eigVal,eigVec

使用矩阵乘法的方式:

def pca_03(X):
mean_ = np.mean(X, axis=0)
X = X - mean_
M,N=X.shape
Sigma=np.dot(X.transpose(),X)/(M-1)
eigVal,eigVec = sp.linalg.eig(Sigma)
#do reduction with eigVal,eigVec

酉矩阵:n阶复方阵U的n个列向量是U空间的一个标准正交基,则U是酉矩阵(Unitary Matrix)。显然酉矩阵是正交矩阵往复数域上的推广。

def pca_04(X):
mean_ = np.mean(X, axis=0)
X = X - mean_
M,N=X.shape
Sigma=np.dot(X.transpose(),X) #这里直接去掉/(M-1)方便和pca_05比较,对求得特征向量无影响
U,S,V = sp.linalg.svd(Sigma);
eigVal,eigVec = S,U
#do reduction with eigVal,eigVec

可以看到在pca_03的基础上我们把sp.linalg.eig改用了sp.linalg.svd,这涉及到: 
结论1:协方差矩阵(或XTX)的奇异值分解结果和特征值分解结果一致。

def pca_05(X):
mean_ = np.mean(X, axis=0)
X = X - mean_
U, S, V = sp.linalg.svd(X)
eigVal,eigVec = S,V
#do reduction with eigVal,eigVec

PCA_04:
eigVal:[ 21.60311815 8.77188185]
eigVec: [[-0.88734696 -0.46110235]
[-0.46110235 0.88734696]] PCA_05:
eigVal:[ 4.64791546 2.96173629]
eigVec: [[ 0.88734696 0.46110235]
[-0.46110235 0.88734696]]
#注意PCA_05结果中特征向量维度的符号,和上面不太一样,但这不影响降维的功能,每一列是一组基

转自:http://blog.csdn.net/dark_scope/article/details/53150883

PCA和SVD(转)的更多相关文章

  1. 降维方法PCA与SVD的联系与区别

    在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析). 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系.本文在简单 ...

  2. What is an intuitive explanation of the relation between PCA and SVD?

    What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...

  3. 数据预处理:PCA,SVD,whitening,normalization

    数据预处理是为了让算法有更好的表现,whitening.PCA.SVD都是预处理的方式: whitening的目标是让特征向量中的特征之间不相关,PCA的目标是降低特征向量的维度,SVD的目标是提高稀 ...

  4. 浅谈 PCA与SVD

    前言 在用数据对模型进行训练时,通常会遇到维度过高,也就是数据的特征太多的问题,有时特征之间还存在一定的相关性,这时如果还使用原数据训练模型,模型的精度会大大下降,因此要降低数据的维度,同时新数据的特 ...

  5. 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD

    PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...

  6. 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现

    简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...

  7. Machine Learning in Action – PCA和SVD

    降维技术, 首先举的例子觉得很好,因为不知不觉中天天都在做着降维的工作 对于显示器显示一个图片是通过像素点0,1,比如对于分辨率1024×768的显示器,就需要1024×768个像素点的0,1来表示, ...

  8. PCA和SVD最佳理解

    奇异值分解(SVD)原理与在降维中的应用 https://www.cnblogs.com/pinard/p/6251584.html 最通俗易懂的PCA主成分分析推导 https://blog.csd ...

  9. 特征向量、特征值以及降维方法(PCA、SVD、LDA)

    一.特征向量/特征值 Av = λv 如果把矩阵看作是一个运动,运动的方向叫做特征向量,运动的速度叫做特征值.对于上式,v为A矩阵的特征向量,λ为A矩阵的特征值. 假设:v不是A的速度(方向) 结果如 ...

随机推荐

  1. golang init函数

    init函数有一下几点特性: init函数在main执行之前,自动被调用执行的,不能显示调用 每个包的init函数在包被引用时,自动被调用 每个包可以有多个init函数 同一个文件中可定义多个init ...

  2. AngularJS通过$location获取及改变当前页面的URL

    本文中获取与修改的URL以 ‘http://172.16.0.88:8100/#/homePage?id=10&a=100' 这个路径为例: 一. 获取url的相关方法(不修改URL): 1. ...

  3. caffe跑densenet的错误:Message type "caffe.PoolingParameter" has no field named "ceil_mode".【转自CSDN】

    最近看了densenet这篇论文,论文作者给了基于caffe的源码,自己在电脑上跑了下,但是出现了Message type “caffe.PoolingParameter” has no field ...

  4. eclipse中的XML文件无法快捷键注释问题

    好多朋友都发现在ME6.0或跟高版本中“Ctrl+Shift+c”或者是“Ctrl+Shift+/”快捷键无论你怎么点,它就是不起作用,恼火吧? 百度 还是 google 都没有找到 合理的说法,更有 ...

  5. socket编程时SIGPIPE信号的处理

    如果在write调用期间对方关闭连接,视时间顺序的不同有以下几种情况: 1. 刚好在write调用之前对方关闭: write返回失败,同时产生SIGPIPE. 2. write调用过程中对方关闭: 返 ...

  6. jenkins 执行python脚本 断言失败就可以构建失败

    可以配合try: 那个语句去搭配

  7. 定义function的层级

    不知道标题拟的对不对,今天犯了个错误,图一是正确的写法. 图一 为了代码可以重复利用,我把其中两个方法独立出来,如图二. 图二 后来发现运行错误,说Gxrc未定义,百思不得其解,后来琢磨了好久,才发现 ...

  8. String intern()方法详解

    执行以下代码 String a1=new String("abc");       String a2=new String("abc");       Sys ...

  9. 压缩归档tar命令

    归档有两个命令,一个是tar命令,一个是cpio 归档不删除原文件 tar命令语法: tar cvf aa.tar file1 file2 file3 file4 file5 # tar cvf bb ...

  10. Hibernate hibernate.cfg.xml配置

    数据库连接<required>: <property name="hibernate.connection.driver_class"> com.mysql ...