PCA和SVD(转)
最近突然看到一个问题,PCA和SVD有什么关系?隐约记得自己照猫画虎实现的时候PCA的时候明明用到了SVD啊,但SVD(奇异值分解)和PCA的(特征值分解)貌似差得相当远,由此钻下去搜集了一些资料,把我的一些收获总结一下,以免以后再忘记。
PCA的简单推导
PCA有两种通俗易懂的解释,
1)是最大化投影后数据的方差(让数据更分散);地址:http://www.cnblogs.com/shixisheng/p/7107363.html
2)是最小化投影造成的损失。(下边讲的就是这个方法)
这两个思路最后都能推导出同样的结果。
下图应该是对PCA第二种解释展示得最好的一张图片了(ref:svd,pca,relation) 


def pca_01(X):
covMat = np.cov(X,rowvar = 0)
eigVal,eigVec = sp.linalg.eig(covMat)
#do reduction with eigVal,eigVec
但因为最后用于变换的矩阵需要是去中心化后的,所以有些地方的实现是:
def pca_02(X):
mean_ = np.mean(X, axis=0)
X = X - mean_
covMat = np.cov(X,rowvar = 0)#实际上是否去中心化对求到的协方差矩阵并无影响,只是方便后面进行降维
eigVal,eigVec = sp.linalg.eig(covMat)
#do reduction with eigVal,eigVec
使用矩阵乘法的方式:
def pca_03(X):
mean_ = np.mean(X, axis=0)
X = X - mean_
M,N=X.shape
Sigma=np.dot(X.transpose(),X)/(M-1)
eigVal,eigVec = sp.linalg.eig(Sigma)
#do reduction with eigVal,eigVec

酉矩阵:n阶复方阵U的n个列向量是U空间的一个标准正交基,则U是酉矩阵(Unitary Matrix)。显然酉矩阵是正交矩阵往复数域上的推广。
def pca_04(X):
mean_ = np.mean(X, axis=0)
X = X - mean_
M,N=X.shape
Sigma=np.dot(X.transpose(),X) #这里直接去掉/(M-1)方便和pca_05比较,对求得特征向量无影响
U,S,V = sp.linalg.svd(Sigma);
eigVal,eigVec = S,U
#do reduction with eigVal,eigVec
可以看到在pca_03的基础上我们把sp.linalg.eig改用了sp.linalg.svd,这涉及到:
结论1:协方差矩阵(或XTX)的奇异值分解结果和特征值分解结果一致。
def pca_05(X):
mean_ = np.mean(X, axis=0)
X = X - mean_
U, S, V = sp.linalg.svd(X)
eigVal,eigVec = S,V
#do reduction with eigVal,eigVec


PCA_04:
eigVal:[ 21.60311815 8.77188185]
eigVec: [[-0.88734696 -0.46110235]
[-0.46110235 0.88734696]] PCA_05:
eigVal:[ 4.64791546 2.96173629]
eigVec: [[ 0.88734696 0.46110235]
[-0.46110235 0.88734696]]
#注意PCA_05结果中特征向量维度的符号,和上面不太一样,但这不影响降维的功能,每一列是一组基



转自:http://blog.csdn.net/dark_scope/article/details/53150883
PCA和SVD(转)的更多相关文章
- 降维方法PCA与SVD的联系与区别
在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析). 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系.本文在简单 ...
- What is an intuitive explanation of the relation between PCA and SVD?
What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...
- 数据预处理:PCA,SVD,whitening,normalization
数据预处理是为了让算法有更好的表现,whitening.PCA.SVD都是预处理的方式: whitening的目标是让特征向量中的特征之间不相关,PCA的目标是降低特征向量的维度,SVD的目标是提高稀 ...
- 浅谈 PCA与SVD
前言 在用数据对模型进行训练时,通常会遇到维度过高,也就是数据的特征太多的问题,有时特征之间还存在一定的相关性,这时如果还使用原数据训练模型,模型的精度会大大下降,因此要降低数据的维度,同时新数据的特 ...
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...
- Machine Learning in Action – PCA和SVD
降维技术, 首先举的例子觉得很好,因为不知不觉中天天都在做着降维的工作 对于显示器显示一个图片是通过像素点0,1,比如对于分辨率1024×768的显示器,就需要1024×768个像素点的0,1来表示, ...
- PCA和SVD最佳理解
奇异值分解(SVD)原理与在降维中的应用 https://www.cnblogs.com/pinard/p/6251584.html 最通俗易懂的PCA主成分分析推导 https://blog.csd ...
- 特征向量、特征值以及降维方法(PCA、SVD、LDA)
一.特征向量/特征值 Av = λv 如果把矩阵看作是一个运动,运动的方向叫做特征向量,运动的速度叫做特征值.对于上式,v为A矩阵的特征向量,λ为A矩阵的特征值. 假设:v不是A的速度(方向) 结果如 ...
随机推荐
- golang init函数
init函数有一下几点特性: init函数在main执行之前,自动被调用执行的,不能显示调用 每个包的init函数在包被引用时,自动被调用 每个包可以有多个init函数 同一个文件中可定义多个init ...
- AngularJS通过$location获取及改变当前页面的URL
本文中获取与修改的URL以 ‘http://172.16.0.88:8100/#/homePage?id=10&a=100' 这个路径为例: 一. 获取url的相关方法(不修改URL): 1. ...
- caffe跑densenet的错误:Message type "caffe.PoolingParameter" has no field named "ceil_mode".【转自CSDN】
最近看了densenet这篇论文,论文作者给了基于caffe的源码,自己在电脑上跑了下,但是出现了Message type “caffe.PoolingParameter” has no field ...
- eclipse中的XML文件无法快捷键注释问题
好多朋友都发现在ME6.0或跟高版本中“Ctrl+Shift+c”或者是“Ctrl+Shift+/”快捷键无论你怎么点,它就是不起作用,恼火吧? 百度 还是 google 都没有找到 合理的说法,更有 ...
- socket编程时SIGPIPE信号的处理
如果在write调用期间对方关闭连接,视时间顺序的不同有以下几种情况: 1. 刚好在write调用之前对方关闭: write返回失败,同时产生SIGPIPE. 2. write调用过程中对方关闭: 返 ...
- jenkins 执行python脚本 断言失败就可以构建失败
可以配合try: 那个语句去搭配
- 定义function的层级
不知道标题拟的对不对,今天犯了个错误,图一是正确的写法. 图一 为了代码可以重复利用,我把其中两个方法独立出来,如图二. 图二 后来发现运行错误,说Gxrc未定义,百思不得其解,后来琢磨了好久,才发现 ...
- String intern()方法详解
执行以下代码 String a1=new String("abc"); String a2=new String("abc"); Sys ...
- 压缩归档tar命令
归档有两个命令,一个是tar命令,一个是cpio 归档不删除原文件 tar命令语法: tar cvf aa.tar file1 file2 file3 file4 file5 # tar cvf bb ...
- Hibernate hibernate.cfg.xml配置
数据库连接<required>: <property name="hibernate.connection.driver_class"> com.mysql ...