NumPy: Basic Statistics

from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=13

  • Average versus median

You now know how to use numpy functions to get a better feeling for your data. It basically comes down to importingnumpy and then calling several simple functions on the numpyarrays:

import numpy as np
x = [1, 4, 8, 10, 12]
np.mean(x)
np.median(x)

# np_baseball is available

# Import numpy
import numpy as np

# Create np_height from np_baseball
np_height = np.array(np_baseball)[:,0]

# Print out the mean of np_height
print(np.mean(np_height))

# Print out the median of np_height
print(np.median(np_height))

  • Explore the baseball data

# np_baseball is available

# Import numpy
import numpy as np

# Print mean height (first column)
avg = np.mean(np_baseball[:,0])
print("Average: " + str(avg))

# Print median height. Replace 'None'
med = np.median(np_baseball[:,0])
print("Median: " + str(med))

# Print out the standard deviation on height. Replace 'None'
stddev = np.std(np_baseball[:,0])
print("Standard Deviation: " + str(stddev))

# Print out correlation between first and second column. Replace 'None'
corr = np.corrcoef(np_baseball[:,0],np_baseball[:,1])
print("Correlation: " + str(corr))

  • Blend it all together

You've contacted FIFA for some data and they handed you two lists. The lists are the following:

positions = ['GK', 'M', 'A', 'D', ...]
heights = [191, 184, 185, 180, ...]

Each element in the lists corresponds to a player. The first list,positions, contains strings representing each player's position. The possible positions are: 'GK' (goalkeeper), 'M' (midfield),'A' (attack) and 'D' (defense). The second list, heights, contains integers representing the height of the player in cm. The first player in the lists is a goalkeeper and is pretty tall (191 cm).

You're fairly confident that the median height of goalkeepers is higher than that of other players on the soccer field. Some of your friends don't believe you, so you are determined to show them using the data you received from FIFA and your newly acquired Python skills.

# heights and positions are available as lists

# Import numpy
import numpy as np

# Convert positions and heights to numpy arrays: np_positions, np_heights
np_positions = np.array(positions)
np_heights = np.array(heights)

# Heights of the goalkeepers: gk_heights
gk_heights = np_heights[np_positions == "GK"]

# Heights of the other players: other_heights
other_heights = np_heights[np_positions != "GK"]

# Print out the median height of goalkeepers. Replace 'None'
print("Median height of goalkeepers: " + str(np.median(gk_heights)))

# Print out the median height of other players. Replace 'None'
print("Median height of other players: " + str(np.median(other_heights)))

Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics的更多相关文章

  1. Intro to Python for Data Science Learning 6 - NumPy

    NumPy From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=1 ...

  2. Intro to Python for Data Science Learning 7 - 2D NumPy Arrays

    2D NumPy Arrays from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4- ...

  3. Intro to Python for Data Science Learning 5 - Packages

    Packages From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functio ...

  4. Intro to Python for Data Science Learning 2 - List

    List from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-2-python-list ...

  5. Intro to Python for Data Science Learning 4 - Methods

    Methods From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-function ...

  6. Intro to Python for Data Science Learning 3 - functions

    Functions from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functi ...

  7. Intermediate Python for Data Science learning 2 - Histograms

    Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...

  8. Intermediate Python for Data Science learning 1 - Basic plots with matplotlib

    Basic plots with matplotlib from:https://campus.datacamp.com/courses/intermediate-python-for-data-sc ...

  9. Intermediate Python for Data Science learning 3 - Customization

    Customization from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotl ...

随机推荐

  1. python pytest测试框架介绍四----pytest-html插件html带错误截图及失败重测机制

    一.html报告错误截图 这次介绍pytest第三方插件pytest-html 这里不介绍怎么使用,因为怎么使用网上已经很多了,这里给个地址给大家参考,pytest-html生成html报告 今天在这 ...

  2. MAC SVN 基本设置 终端命令

    extends:http://www.cnblogs.com/heiniuhaha/archive/2012/07/31/2616493.html 安装XCode后Mac OS X 系统已经内置了sv ...

  3. Xcode - Your development team, "", does not support the Push Notifications capability.

    1.问题描述: 从git上checkout了别人的一个工程文件,选择team时,Xcode显示如下问题 Your development team, "xxx.xxx.xxx", ...

  4. 利用 bugly 分析应用崩溃

    Bugly-Crash监控能让我们及时的掌控应用的Crash,并快速修复.这种情况就在于我们把应用发布出去了,但是用户那边有着各种各样我们想象不到的系统崩溃,我们无法通过简单的控制台捕获错误信息和崩溃 ...

  5. Java、JavaWeb中单元测试用到的测试方法

    写出的代码做单元测试时,一定要记住从三个方面出发:1.成功  2.异常  3 逻辑错误(即没有异常也可能程序运行出最后结果,可是呢?呵呵).这就是在做测试时我要牢记的三个方面,同时思维要严谨也即做事要 ...

  6. Java中为什么需要反射?反射要解决什么问题?

    一句话概括就是使用反射可以赋予jvm动态编译的能力,否则类的元数据信息只能用静态编译的方式实现,例如热加载,Tomcat的classloader等等都没法支持 Java中编译类型有两种: 静态编译:在 ...

  7. python--pytest库

    pytest:是一个框架,使构建简单和可扩展的测试变得容易. 安装:pip install -U pytest 检查安装:pytest --version 官方文档:https://docs.pyte ...

  8. 2018牛客网暑期ACM多校训练营(第二场) A - run - [DP]

    题目链接:https://www.nowcoder.com/acm/contest/140/A 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 131072K,其他语言262144K ...

  9. 扩展KMP算法小记

    参考来自<拓展kmp算法总结>:http://blog.csdn.net/dyx404514/article/details/41831947 扩展KMP解决的问题: 定义母串S和子串T, ...

  10. 替换{0}为指定的字符串(MessageFormat)

    package com.text; import java.text.MessageFormat; /**替换{0}为指定的字符串*/ public class MessageFormatTest { ...