TF-IDF

前言

前段时间,又具体看了自己以前整理的TF-IDF,这里把它发布在博客上,知识就是需要不断的重复的,否则就感觉生疏了。

TF-IDF理解

TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术, TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TFIDF实际上是:TF * IDF,TF词频(Term Frequency),IDF反文档频率(Inverse Document Frequency)。TF表示词条在文档d中出现的频率。IDF的主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。如果某一类文档C中包含词条t的文档数为m,而其它类包含t的文档总数为k,显然所有包含t的文档数n=m + k,当m大的时候,n也大,按照IDF公式得到的IDF的值会小,就说明该词条t类别区分能力不强。但是实际上,如果一个词条在一个类的文档中频繁出现,则说明该词条能够很好代表这个类的文本的特征,这样的词条应该给它们赋予较高的权重,并选来作为该类文本的特征词以区别与其它类文档。这就是IDF的不足之处.

TF公式:

以上式子中  是该词在文件中的出现次数,而分母则是在文件中所有字词的出现次数之和。

IDF公式:

  • |D|:语料库中的文件总数
  • :包含词语的文件数目(即的文件数目)如果该词语不在语料库中,就会导致被除数为零,因此一般情况下使用

然后

TF-IDF案例

案例:假如一篇文件的总词语数是100个,而词语“母牛”出现了3次,那么“母牛”一词在该文件中的词频就是3/100=0.03。一个计算文件频率 (DF) 的方法是测定有多少份文件出现过“母牛”一词,然后除以文件集里包含的文件总数。所以,如果“母牛”一词在1,000份文件出现过,而文件总数是10,000,000份的话,其逆向文件频率就是 lg(10,000,000 / 1,000)=4。最后的TF-IDF的分数为0.03 * 4=0.12。

TF-IDF实现(Java)

这里采用了外部插件IKAnalyzer-2012.jar,用其进行分词,插件和测试文件可以从这里下载:点击

具体代码如下:

package tfidf;

import java.io.*;
import java.util.*; import org.wltea.analyzer.lucene.IKAnalyzer; public class ReadFiles { /**
* @param args
*/
private static ArrayList<String> FileList = new ArrayList<String>(); // the list of file //get list of file for the directory, including sub-directory of it
public static List<String> readDirs(String filepath) throws FileNotFoundException, IOException
{
try
{
File file = new File(filepath);
if(!file.isDirectory())
{
System.out.println("输入的[]");
System.out.println("filepath:" + file.getAbsolutePath());
}
else
{
String[] flist = file.list();
for(int i = 0; i < flist.length; i++)
{
File newfile = new File(filepath + "\\" + flist[i]);
if(!newfile.isDirectory())
{
FileList.add(newfile.getAbsolutePath());
}
else if(newfile.isDirectory()) //if file is a directory, call ReadDirs
{
readDirs(filepath + "\\" + flist[i]);
}
}
}
}catch(FileNotFoundException e)
{
System.out.println(e.getMessage());
}
return FileList;
} //read file
public static String readFile(String file) throws FileNotFoundException, IOException
{
StringBuffer strSb = new StringBuffer(); //String is constant, StringBuffer can be changed.
InputStreamReader inStrR = new InputStreamReader(new FileInputStream(file), "gbk"); //byte streams to character streams
BufferedReader br = new BufferedReader(inStrR);
String line = br.readLine();
while(line != null){
strSb.append(line).append("\r\n");
line = br.readLine();
} return strSb.toString();
} //word segmentation
public static ArrayList<String> cutWords(String file) throws IOException{ ArrayList<String> words = new ArrayList<String>();
String text = ReadFiles.readFile(file);
IKAnalyzer analyzer = new IKAnalyzer();
words = analyzer.split(text); return words;
} //term frequency in a file, times for each word
public static HashMap<String, Integer> normalTF(ArrayList<String> cutwords){
HashMap<String, Integer> resTF = new HashMap<String, Integer>(); for(String word : cutwords){
if(resTF.get(word) == null){
resTF.put(word, 1);
System.out.println(word);
}
else{
resTF.put(word, resTF.get(word) + 1);
System.out.println(word.toString());
}
}
return resTF;
} //term frequency in a file, frequency of each word
public static HashMap<String, Float> tf(ArrayList<String> cutwords){
HashMap<String, Float> resTF = new HashMap<String, Float>(); int wordLen = cutwords.size();
HashMap<String, Integer> intTF = ReadFiles.normalTF(cutwords); Iterator iter = intTF.entrySet().iterator(); //iterator for that get from TF
while(iter.hasNext()){
Map.Entry entry = (Map.Entry)iter.next();
resTF.put(entry.getKey().toString(), Float.parseFloat(entry.getValue().toString()) / wordLen);
System.out.println(entry.getKey().toString() + " = "+ Float.parseFloat(entry.getValue().toString()) / wordLen);
}
return resTF;
} //tf times for file
public static HashMap<String, HashMap<String, Integer>> normalTFAllFiles(String dirc) throws IOException{
HashMap<String, HashMap<String, Integer>> allNormalTF = new HashMap<String, HashMap<String,Integer>>(); List<String> filelist = ReadFiles.readDirs(dirc);
for(String file : filelist){
HashMap<String, Integer> dict = new HashMap<String, Integer>();
ArrayList<String> cutwords = ReadFiles.cutWords(file); //get cut word for one file dict = ReadFiles.normalTF(cutwords);
allNormalTF.put(file, dict);
}
return allNormalTF;
} //tf for all file
public static HashMap<String,HashMap<String, Float>> tfAllFiles(String dirc) throws IOException{
HashMap<String, HashMap<String, Float>> allTF = new HashMap<String, HashMap<String, Float>>();
List<String> filelist = ReadFiles.readDirs(dirc); for(String file : filelist){
HashMap<String, Float> dict = new HashMap<String, Float>();
ArrayList<String> cutwords = ReadFiles.cutWords(file); //get cut words for one file dict = ReadFiles.tf(cutwords);
allTF.put(file, dict);
}
return allTF;
}
public static HashMap<String, Float> idf(HashMap<String,HashMap<String, Float>> all_tf){
HashMap<String, Float> resIdf = new HashMap<String, Float>();
HashMap<String, Integer> dict = new HashMap<String, Integer>();
int docNum = FileList.size(); for(int i = 0; i < docNum; i++){
HashMap<String, Float> temp = all_tf.get(FileList.get(i));
Iterator iter = temp.entrySet().iterator();
while(iter.hasNext()){
Map.Entry entry = (Map.Entry)iter.next();
String word = entry.getKey().toString();
if(dict.get(word) == null){
dict.put(word, 1);
}else {
dict.put(word, dict.get(word) + 1);
}
}
}
System.out.println("IDF for every word is:");
Iterator iter_dict = dict.entrySet().iterator();
while(iter_dict.hasNext()){
Map.Entry entry = (Map.Entry)iter_dict.next();
float value = (float)Math.log(docNum / Float.parseFloat(entry.getValue().toString()));
resIdf.put(entry.getKey().toString(), value);
System.out.println(entry.getKey().toString() + " = " + value);
}
return resIdf;
}
public static void tf_idf(HashMap<String,HashMap<String, Float>> all_tf,HashMap<String, Float> idfs){
HashMap<String, HashMap<String, Float>> resTfIdf = new HashMap<String, HashMap<String, Float>>(); int docNum = FileList.size();
for(int i = 0; i < docNum; i++){
String filepath = FileList.get(i);
HashMap<String, Float> tfidf = new HashMap<String, Float>();
HashMap<String, Float> temp = all_tf.get(filepath);
Iterator iter = temp.entrySet().iterator();
while(iter.hasNext()){
Map.Entry entry = (Map.Entry)iter.next();
String word = entry.getKey().toString();
Float value = (float)Float.parseFloat(entry.getValue().toString()) * idfs.get(word);
tfidf.put(word, value);
}
resTfIdf.put(filepath, tfidf);
}
System.out.println("TF-IDF for Every file is :");
DisTfIdf(resTfIdf);
}
public static void DisTfIdf(HashMap<String, HashMap<String, Float>> tfidf){
Iterator iter1 = tfidf.entrySet().iterator();
while(iter1.hasNext()){
Map.Entry entrys = (Map.Entry)iter1.next();
System.out.println("FileName: " + entrys.getKey().toString());
System.out.print("{");
HashMap<String, Float> temp = (HashMap<String, Float>) entrys.getValue();
Iterator iter2 = temp.entrySet().iterator();
while(iter2.hasNext()){
Map.Entry entry = (Map.Entry)iter2.next();
System.out.print(entry.getKey().toString() + " = " + entry.getValue().toString() + ", ");
}
System.out.println("}");
} }
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
String file = "D:/testfiles"; HashMap<String,HashMap<String, Float>> all_tf = tfAllFiles(file);
System.out.println();
HashMap<String, Float> idfs = idf(all_tf);
System.out.println();
tf_idf(all_tf, idfs); } }

结果如下图:

常见问题

没有加入lucene jar包

lucene包和je包版本不适合

TF-IDF理解及其Java实现的更多相关文章

  1. 文本分类学习(三) 特征权重(TF/IDF)和特征提取

    上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...

  2. tf idf公式及sklearn中TfidfVectorizer

    在文本挖掘预处理之向量化与Hash Trick中我们讲到在文本挖掘的预处理中,向量化之后一般都伴随着TF-IDF的处理,那么什么是TF-IDF,为什么一般我们要加这一步预处理呢?这里就对TF-IDF的 ...

  3. 25.TF&IDF算法以及向量空间模型算法

    主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean mo ...

  4. Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据

    相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...

  5. TF/IDF(term frequency/inverse document frequency)

    TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...

  6. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

  7. 使用solr的函数查询,并获取tf*idf值

    1. 使用函数df(field,keyword) 和idf(field,keyword). http://118.85.207.11:11100/solr/mobile/select?q={!func ...

  8. TF/IDF计算方法

    FROM:http://blog.csdn.net/pennyliang/article/details/1231028 我们已经谈过了如何自动下载网页.如何建立索引.如何衡量网页的质量(Page R ...

  9. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

随机推荐

  1. android适配不同分辨率的手机

    android中不同手机分辨率适配问题 在项目开发的过程中,同一个布局对应不同的手机会显示出不同的效果.导致这个现象产生的原因是不同手机的分辨率不同.在android sdk提供的帮助文档中,我们可以 ...

  2. Windows下node.js安装及环境配置

    1. 安装 官网下载node.js的安装版,一路next,中间可以自定义安装路径 完成后安装目录内容如下 cmd下检查是否安装成功 新版Node.js已自带npm,所以安装Node.js时会一起安装, ...

  3. 递归查询构造jquery tree

    1 现在有如下的一张表: CREATE TABLE [dbo].[ThemeCategory] ( [ID] [int] NOT NULL, [ThemeCategoryName] [nvarchar ...

  4. (原)luarocks install 提示 failed fetching manifest

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6400169.html 参考网址: https://github.com/torch/torch7/is ...

  5. Java进制转换, 数据类型, 运算符

    1:进制转换 转换规则: 先把数据的每一位上的系数乘以对应基数的次幂(低位从零开始),然后相加即可 十进制到其他进制 规则:除基取余,直到商为0,最后将余数反转 十进制到二进制: 除2取余,直到商为0 ...

  6. keras中的模型保存和加载

    tensorflow中的模型常常是protobuf格式,这种格式既可以是二进制也可以是文本.keras模型保存和加载与tensorflow不同,keras中的模型保存和加载往往是保存成hdf5格式. ...

  7. iOS 中的各种锁

    在日常开发过程中,为了提升程序运行效率,以及用户体验,我们经常使用多线程.在使用多线程的过程中,难免会遇到资源竞争问题.我们采用锁的机制来确保线程安全. 线程安全 当一个线程访问数据的时候,其他的线程 ...

  8. 老男孩linux实战培训初级班第三次课课前考试题

    ################################################################ 本文内容摘录于老男孩linux实战运维培训中心考试题 如有转载,请务必 ...

  9. ASP.NET MVC 向浏览器发送文件以提供文件下载功能

    撑到大三了,结果发现周围的同学更加堕落了,尤其是某些人,表面上看起来很认真,实际上三天打鱼,两天晒网,结果一事无成,却还要抱怨学校教育失败. 为了吸取他们的教训,就算是一个小小的编码问题,我也要努力解 ...

  10. SharePoint 2013 Step by Step——使用自定义的List Template

    Overview 对于企业员工来说,"扁平结构"的LIST是日常操作中经常使用到的,LIST的好处是方便数据的录入以及数据的整理分析,尤其是Quick Edit功能,可以实现快速编 ...