图论-桥/割点/双连通分量/缩点/LCA
基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点。 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合。 3.点连通度:最小割点集合中的顶点数。 4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图。 5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合。 6.边连通度:一个图的边连通度的定义为,最小割边集合中的边数。 7.缩点:把没有割边的连通子图缩为一个点,此时满足任意两点之间都有两条路径可达。 注:求块<>求缩点。缩点后变成一棵k个点k-1条割边连接成的树。而割点可以存在于多个块中。 8.双连通分量:分为点双连通和边双连通。它的标准定义为:点连通度大于1的图称为点双连通图,边连通度大于1的图称为边双连通图。通俗地讲,满足任意两点之间,能通过两条或两条以上没有任何重复边的路到达的图称为双连通图。无向图G的极大双连通子图称为双连通分量。 Tarjan算法的应用论述: 1.求强连通分量、割点、桥、缩点: 对于Tarjan算法中,我们得到了dfn和low两个数组, low[u]:=min(low[u],dfn[v])——(u,v)为后向边,v不是u的子树; low[u]:=min(low[u],low[v])——(u,v)为树枝边,v为u的子树; 下边对其进行讨论: 若low[v]>=dfn[u],则u为割点,u和它的子孙形成一个块。因为这说明u的子孙不能够通过其他边到达u的祖先,这样去掉u之后,图必然分裂为两个子图。 若low[v]>dfn[u],则(u,v)为割边。理由类似于上一种情况。 Tarjan求有向图强连通分量、割点、割边的代码: Var
n,m,i,j,x,y,z:longint;
a,b:array[0..1000,0..1000]of longint;//图
dfn,low,s:array[0..1000]of longint;//dfn为时间戳,low为祖先,s为栈
vis,ins:array[0..1000]of boolean;//vis为是否访问,ins为是否在栈中
num,p:longint; function min(x,y:longint):longint;
begin
if x<y then exit(x) else exit(y);
end; procedure tarjan(u:longint);
var
i,v:longint;
begin
inc(num);//给定一个时间戳
dfn[u]:=num;
low[u]:=num;
vis[u]:=true;
inc(p);//入栈
s[p]:=u;
ins[u]:=true;
for i:=1 to b[u,0] do//注意只有u与i相连才进行下面的操作
if not vis[b[u,i]] then//未被访问
begin
tarjan(b[u,i]);
low[u]:=min(low[u],low[b[u,i]]);//是树枝边,取两个low的min值
{如果是求割点或者割边,在这里判断dfn[u]和low[v]的大小并进行弹栈即可。}
end
else if ins[b[u,i]] then//在栈中
low[u]:=min(low[u],dfn[b[u,i]]);//非树枝边,取low与dfn的min值
if dfn[u]=low[u] then//已经找到一个强连通分量,弹栈。
repeat
v:=s[p];
write(v,' ');
ins[v]:=false;
dec(p);
if u=v then writeln;
until u=v;
end; begin
readln(n,m);
for i:=1 to m do//构图
begin
readln(x,y);
inc(b[x,0]);
b[x,b[x,0]]:=y;
end;
tarjan(1);
End. 2.求双连通分量以及构造双连通分量: 对于点双连通分支,实际上在求割点的过程中就能顺便把每个点双连通分支求出。建立一个栈,存储当前双连通分支,在搜索图时,每找到一条树枝边或后向边(非横叉边),就把这条边加入栈中。如果遇到某时满足DFS(u)<=Low(v),说明u是一个割点,同时把边从栈顶一个个取出,直到遇到了边(u,v),取出的这些边与其关联的点,组成一个点双连通分支。割点可以属于多个点双连通分支,其余点和每条边只属于且属于一个点双连通分支。 对于边双连通分支,求法更为简单。只需在求出所有的桥以后,把桥边删除,原图变成了多个连通块,则每个连通块就是一个边双连通分支。桥不属于任何一个边双连通分支,其余的边和每个顶点都属于且只属于一个边双连通分支。 一个有桥的连通图,如何把它通过加边变成边双连通图?方法为首先求出所有的桥,然后删除这些桥边,剩下的每个连通块都是一个双连通子图。把每个双连通子图收缩为一个顶点,再把桥边加回来,最后的这个图一定是一棵树,边连通度为1。 统计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加(leaf+1)/2条边,就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2。具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。 3.求最近公共祖先(LCA) 在遍历到u时,先tarjan遍历完u的子树,则u和u的子树中的节点的最近公共祖先就是u,并且u和【u的兄弟节点及其子树】的最近公共祖先就是u的父亲。注意到由于我们是按照DFS顺序遍历的,我们可用一个color数组标记,正在访问的染色为1,未访问的标记为0,已经访问到即在【u的子树中的】及【u的已访问的兄弟节点及其子树中的】染色标记为2,这样我们可以通过并查集的不断合并更新,通过find实现以上目标。 function find(x:longint):longint;
begin
if f[x]<>x then f[x]:=find(f[x]);
find:=f[x];
end;
procedure tarjan(u:longint);
begin
f[u]:=u; color[u]:=1;
for i:=1 to n do
if (g[u,i])and(color[i]=0) then//g[u,i]表示u连着i
begin
tarjan(i); f[i]:=u;
end;
for i:=1 to n do
if ((ask[u,i])or(ask[i,u]))and(color[i]=2) then//ask[u,i]表示询问了u,i
begin
lca[u,i]:=find(i); lca[i,u]:=lca[u,i];
end;
color[u]:=2;
end; 注:用链表存储边和问题,可以使得该算法的时间复杂度降低为O(n+m+q),其中n、m、q分别为点、边、问题数目。本文中为了书写简便,采用的是矩阵的存储方式。 参考例题:Poj 1523、2942、3694、3352、3177 Tyvj P1111
图论-桥/割点/双连通分量/缩点/LCA的更多相关文章
- HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)
Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...
- POJ3694 Network(边双连通分量+缩点+LCA)
题目大概是给一张图,动态加边动态求割边数. 本想着求出边双连通分量后缩点,然后构成的树用树链剖分+线段树去维护路径上的边数和..好像好难写.. 看了别人的解法,这题有更简单的算法: 在任意两点添边,那 ...
- tarjan算法与无向图的连通性(割点,桥,双连通分量,缩点)
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分 ...
- 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)
layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...
- POJ3177 Redundant Paths(边双连通分量+缩点)
题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...
- 连通分量模板:tarjan: 求割点 && 桥 && 缩点 && 强连通分量 && 双连通分量 && LCA(近期公共祖先)
PS:摘自一不知名的来自大神. 1.割点:若删掉某点后.原连通图分裂为多个子图.则称该点为割点. 2.割点集合:在一个无向连通图中,假设有一个顶点集合,删除这个顶点集合,以及这个集合中全部顶点相关联的 ...
- Tarjan算法初探(3):求割点与桥以及双连通分量
接上一节Tarjan算法初探(2):缩点 在此首先提出几个概念: 割点集合:一个无向连通图G 若删除它的一个点集 以及点集中所有点相连的边(任意一端在点集中)后 G中有点之间不再连通则称这个点集是它的 ...
- poj3177(边双连通分量+缩点)
传送门:Redundant Paths 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立 ...
- poj 3694双联通缩点+LCA
题意:给你一个无向连通图,每次加一条边后,问图中桥的数目. 思路:先将图进行双联通缩点,则缩点后图的边就是桥,然后dfs记录节点深度,给出(u,v)使其节点深度先降到同一等级,然后同时降等级直到汇合到 ...
随机推荐
- Jenkins入门知识
1 修改jenkins的根目录,默认地在C:\Documents and Settings\AAA\.jenkins . .jenkins ├─jobs│ └─JavaHelloWorld│ ...
- NAS 创建大文件
不是很懂,但是管用.先记录下来. http://www.111cn.net/sys/linux/55537.htm
- h5文件(.h5和.hdf5)
HDF5 (.h5, .hdf5) HDF 是 Hierarchical Data Format(分层数据格式)的缩写 HDF 版本 5不与 HDF 版本 4 及早期版本兼容. HDF5 (.h5, ...
- 虚拟机中安装linux系统步骤
参考:http://blog.csdn.net/u013111221/article/details/50856934 后面参考:http://blog.csdn.net/chenweitang123 ...
- 防止dedecms注入文件挂马的解决方法
1.目录权限我们不建议用户把栏目目录设置在根目录,原因是这样进行安全设置会十分的麻烦,在默认的情况下,安装完成后,目录设置如下:(1) data.templets.uploads.a或5.3的html ...
- PHP 数组current和next用法
1.current 当前数组 <?php $transport = array('foot', 'bike', 'car', 'plane'); $mode = current($trans ...
- 解决sourcesafe admin用户自动登录并且不用密码的问题
用管理员(admin)登录Microsoft Visual SourceSafe Administration tools-> "SourceSafe Options界 ...
- [OpenCV] Samples 01: Geometry - 几何图形
前言 基本的几何图形,标注功能. commondLineParser的使用参见:http://blog.csdn.net/u010305560/article/details/8941365 #inc ...
- AngularJS------使用VSCode创建的Angular项目部署IIS
转载: http://www.cnblogs.com/kingkangstudy/p/7699710.html 1.进入项目src,执行命令行:ng build 2.步骤1后会生成dist文件 3.打 ...
- [Linux] 特殊文件 /dev/zero
/dev/zero 是类 Unix 系统中一个特殊的文件,当读取该文件时,它会提供无限的空字符 null.它的一个主要用途是提供字符流来初始化数据存储,也就是使用空字符覆盖目标数据.另一个常见的用法是 ...