The easy way to implement a Red-Black tree
Red-Black trees are notorious for being nightmares of pointer manipulation. Instructors will show the theory, but won’t torture their students to implement one. Interviewers will avoid asking about it. They probably couldn’t do it themselves.
You should be vaguely familiar with how you might balance a tree. The details, however, are probably unnecessary for the purposes of an interview. – Gayle McDowell, Cracking the coding interview
If you’re proficient in a functional language, you owe it to yourself to implement a Red-Black tree. You’ll be one of the few people that can code a Red-Black tree on a whiteboard.
It will make you realize why people are so excited about the whole functional programming thing.
What is a Red-Black Tree?
A Red-Black tree is a balanced binary search tree. Every node is colored red or black. Three rules hold:
- No red node has a red child.
- Every path from the root to an empty node contains the same number of black nodes.
- An empty node is always black.
Draw a tree with these rules. Notice it’s always relatively-balanced. Try to draw one as unbalanced as possible. You won’t get far.
You can prove the maximum depth of a node is at most 2
Implementation
Let’s implement a set with a Red-Black tree. At minimum we’ll need a member
function and an insert
function.
Data
A tree can be empty, or it can be a node with two subtrees, a color, and an element.
data Tree a = Empty -- Empty does not need a color, it's always black.
| T Color (Tree a) a (Tree a)
data Color = R
| B
Member
The member
function searches for an element. It’s a binary search.
member :: Ord a => Tree a -> a -> Bool
member (T _ left e right) x | x == e = True
| x < e = member left x
| x > e = member right x
member Empty _ = False
Insert
The insert
function uses the function build
, which is a constructor that makes sure the node is balanced.
insert :: Ord a => a -> Tree a -> Tree a
insert x s = let T _ a y b = ins s
in T B a y b
where
ins s'@(T color a' y' b')
| x < y' = build color (ins a') y' b'
| x > y' = build color a' y' (ins b')
| otherwise = s'
ins Empty = T R Empty x Empty
There are four cases when build
needs to adjust a node. It detects the case when a black parent has a red child with a red child. It shifts the nodes around to fix it. The solution is the same in every case. (Notice the right hand sides of build
are the same).
build :: Color -> Tree a -> a -> Tree a -> Tree a
build B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
build B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
build B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
build B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
build color left x right = T color left x right
Afterwards
That’s it. You have a Red-Black tree.
If you want to learn more, read Purely Functional Data Structures by Chris Okasaki. I stole most of my implementation from this book. The build
diagram is also from the book.
module RedBlackSet( empty
, member
, insert
) where
data Tree a = Empty
| T Color (Tree a) a (Tree a)
data Color = R
| B
empty :: Ord a => Tree a
empty = Empty
member :: Ord a => Tree a -> a -> Bool
member (T _ left e right) x | x == e = True
| x < e = member left x
| x > e = member right x
member Empty _ = False
insert :: Ord a => a -> Tree a -> Tree a
insert x s = let T _ a y b = ins s
in T B a y b
where
ins s'@(T color a' y' b')
| x < y' = build color (ins a') y' b'
| x > y' = build color a' y' (ins b')
| otherwise = s'
ins Empty = T R Empty x Empty
build :: Color -> Tree a -> a -> Tree a -> Tree a
build B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
build B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
build B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
build B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
build color left x right = T color left x right
The easy way to implement a Red-Black tree的更多相关文章
- Red–black tree ---reference wiki
source address:http://en.wikipedia.org/wiki/Red%E2%80%93black_tree A red–black tree is a type of sel ...
- [转载] 红黑树(Red Black Tree)- 对于 JDK TreeMap的实现
转载自http://blog.csdn.net/yangjun2/article/details/6542321 介绍另一种平衡二叉树:红黑树(Red Black Tree),红黑树由Rudolf B ...
- Red Black Tree 红黑树 AVL trees 2-3 trees 2-3-4 trees B-trees Red-black trees Balanced search tree 平衡搜索树
小结: 1.红黑树:典型的用途是实现关联数组 2.旋转 当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质.为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树中某些 ...
- CF1208H Red Blue Tree
CF1208H Red Blue Tree 原本应该放在这里但是这题过于毒瘤..单独开了篇blog 首先考虑如果 $ k $ 无限小,那么显然整个树都是蓝色的.随着 $ k $ 逐渐增大,每个点都会有 ...
- (easy)LeetCode 232.Implement Queue using Stacks
Implement the following operations of a queue using stacks. push(x) -- Push element x to the back of ...
- (easy)LeetCode 225.Implement Stack using Queues
Implement the following operations of a stack using queues. push(x) -- Push element x onto stack. po ...
- 【easy】225. Implement Stack using Queues
用队列实现栈.这个实现方法十分的简单,就是在push这一步的时候直接变成逆序. class MyStack { private: queue<int> q; queue<int> ...
- 2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)
BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among ...
- ZOJ - 4048 Red Black Tree (LCA+贪心) The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online
题意:一棵树上有m个红色结点,树的边有权值.q次查询,每次给出k个点,每次查询有且只有一次机会将n个点中任意一个点染红,令k个点中距离红色祖先距离最大的那个点的距离最小化.q次查询相互独立. 分析:数 ...
随机推荐
- jquery的live转on的办法
<!DOCTYPE html> <html> <head> <script src="http://libs.baidu.com/jquery/1. ...
- SqlServer -- 仅当使用了列列表并且 IDENTITY_INSERT 为 ON 时,才能为表'T_FM_AMTFLOW'中的标识列指定显式值。
SET IDENTITY_INSERT TABLE_NAME ON; INSERT INTO TABLE_NAME(XXX, XXX,..., XXX) SELECT XXX, XXX,..., XX ...
- 《ASP.NET MVC高级编程(4版)》读书笔记(5)表单和HTML辅助方法
5.1 表单使用 5.1.1 action 和 method 特性 <form action="/Home/Index"> <input name=&qu ...
- JavaScript 字符串处理详解
一.创建字符串 创建一个字符串,将一组字符串用引号包起来,将其赋值给一个字符串变量. var JsStr="Hello,JavaScript String!"; 二.字 ...
- 10201启动时候报ORA-27125
[ora10g@oracle ~]$ sqlplus / as sysdba SQL*Plus: Release 10.2.0.1.0 - Production on Thu Feb 26 18:46 ...
- js对象克隆方法
方法1: function clone(obj){ var o; switch(typeof obj){ case 'undefined': break; case 'string' : o = ob ...
- BeautifulSoup研究一
BeautifulSoup的文档见 https://www.crummy.com/software/BeautifulSoup/bs4/doc.zh/ 其中.contents 会将换行也记录为一个子节 ...
- Kafka vs RocketMQ—— Topic数量对单机性能的影响-转自阿里中间件
引言 上一期我们对比了三类消息产品(Kafka.RabbitMQ.RocketMQ)单纯发送小消息的性能,受到了程序猿们的广泛关注,其中大家对这种单纯的发送场景感到并不过瘾,因为没有任何一个网站的业务 ...
- DOM事件
在慕课网上学习了DOM事件探秘课程,特此整理了一下笔记. 慕课网DOM事件探秘课程地址:http://www.imooc.com/learn/138 事件 是文档或浏览器窗口中发生的特定的交互瞬间.[ ...
- memcache and redis 的区别
memcache和redis都属于缓存但是memcache的存储大小是收到 限制的memcache的 键值长度是250,内存的大小限制是1M并且memcache不支持数据的持久化缓存 redis支持五 ...