题目链接

uoj185

题解

设\(f[i][j]\)表示\(i\)为根的子树,\(i\)号点对应图上\(j\)号点时的方案数

显然这样\(dp\)会使一些节点使用同一个节点,此时总的节点数就不满\(n\)个

我们枚举选的点\(S\),再进行\(dp\)

然后根据选的点数量进行容斥

【BZOJ卡不过QAQ】

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define lbt(x) (x & -x)
using namespace std;
const int maxn = 18,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,fa[maxn],S,G[maxn][maxn],g[maxn][maxn];
LL f[maxn][maxn];
void dfs(int u){
LL sum;
for (int i = 1; i <= n; i++)
if ((S & (1 << i - 1))) f[u][i] = 1;
else f[u][i] = 0;
for (int to = 1; to <= n; to++) if (g[u][to] && to != fa[u]){
fa[to] = u; dfs(to);
for (int i = 1; i <= n; i++) if (f[u][i]){
sum = 0;
for (int j = 1; j <= n; j++)
sum += f[to][j] * G[i][j];
f[u][i] *= sum;
}
}
}
int main(){
n = read(); m = read(); int a,b;
REP(i,m){
a = read(); b = read();
G[a][b] = G[b][a] = 1;
}
for (int i = 1; i < n; i++){
a = read(); b = read();
g[a][b] = g[b][a] = 1;
}
int maxv = (1 << n) - 1,cnt;
LL sum,ans = 0;
for (S = 1; S <= maxv; S++){
cnt = 0; for (int i = S; i; i -= lbt(i)) cnt++;
dfs(1); sum = 0;
for (int i = 1; i <= n; i++) sum += f[1][i];
if ((n - cnt) & 1) ans -= sum;
else ans += sum;
}
printf("%lld\n",ans);
return 0;
}

uoj185 [ZJOI2016]小星星 【dp + 容斥】的更多相关文章

  1. [ZJOI2016]小星星(容斥+dp)

    洛谷链接:https://www.luogu.org/problemnew/show/P3349 题意相当于给一棵树重新赋予彼此不同的编号,要求树上相邻的两个节点在给定的另外一个无向图中也存在边相连. ...

  2. [zjoi2016]小星星 (容斥+DP)

    我们先用树形DP,求出选取集合S中的点,满足连通性的但是标号可重的方案数,贡献给F(i)(1\(\leq\)i\(\leq\)\(\mid S\mid\)),也就是我们要处理出F(i)代表取至多i个点 ...

  3. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  4. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  5. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  6. UOJ185 ZJOI2016 小星星 容斥、树形DP

    传送门 先考虑一个暴力的DP:设\(f_{i,j,S}\)表示点\(i\)映射到了图中的点\(j\),且点\(i\)所在子树的所有点映射到了图中的集合\(S\)时的映射方案数,转移暴力地枚举子集即可, ...

  7. bzoj 4455 [Zjoi2016]小星星 树形dp&容斥

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 643  Solved: 391[Submit][Status] ...

  8. 【题解】P3349 [ZJOI2016]小星星 - 子集dp - 容斥

    P3349 [ZJOI2016]小星星 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 小 \(Y\) 是一个心灵手巧 ...

  9. [BZOJ4455][ZJOI2016]数星星(容斥DP)

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 707  Solved: 419[Submit][Status] ...

随机推荐

  1. 爬虫学习(十二)——bs4实践案例

    实践项目————诗词名句网<三国演义>小说爬取 import osimport reimport timeimport urllib.requestimport urllib.parsef ...

  2. LEA指令与MOV指令区别

    Tips: LEA指令与MOV指令的区别: ① MOV指令是 数据        传送指令-------传送数据 LEA指令是   有效地址 传送指令-------取偏移地址 ② MOV OPRD1 ...

  3. php-5.6.26源代码 - 扩展模块的加载、注册

    // main实现在文件 php-5.6.26\sapi\cgi\cgi_main.c int main(int argc, char *argv[]) { .... cgi_sapi_module- ...

  4. PHP 面向对象 static 和 self 的区别

    一.前言 php是世界上最好的语言 php从面向过程走到现在成熟的面向对象体系, 在php面向对象中,静态变量的调用我们可以用这两个self::method和 static::method, 但是很多 ...

  5. git的使用入门

    写作目的: 快速的上手git版本控制+github神器进行基本的版本同步操作. 怎么做? 对于任意一个代码项目,使用git_bash进入到代码目录 如果没有进行过初始化操作:应当使用git init  ...

  6. python requests第三方库详解

    异常处理:try ... except ...

  7. pocscan扫描框架的搭建

    0x00 无意中看到了一篇文章 讲pocscan的搭建..就比较心动 决定自己也搭建一个这样的扫描平台 0x01 安装docker 用的是ubuntu yklin 16.04 x64的系统 在更新源之 ...

  8. WPF的线程模型

    原文:WPF的线程模型 WPF的线程模型            周银辉 谈到多线程,很多人对其可能都不太有好感,觉得麻烦与易出错.所以我们不排除有这样的情况:假设我对“多线程”.“异步”这些字眼潜意识 ...

  9. 网易OpenStack部署运维实战

    OpenStack自2010年项目成立以来,已经有超过200个公司加入了 OpenStack 项目,目前参与 OpenStack 项目的开发人员有 17,000+,而且这些数字还在增加,作为一个开源的 ...

  10. asp.net 常用几种下载方式

    protected void Button1_Click(object sender, EventArgs e) { /* 微软为Response对象提供了一个新的方法TransmitFile来解决使 ...