[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=62369739

Description

osu 是一款群众喜闻乐见的休闲软件。

我们可以把osu的规则简化与改编成以下的样子:

一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)

现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。

Input

第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。

Output

只有一个实数,表示答案。答案四舍五入后保留1位小数。

Sample Input

3

0.5

0.5

0.5

Sample Output

6.0

HINT

【样例说明】

000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0

N<=100000

当然,看到题的第一反应就是dp。为什么呢?通常如果题面的信息或所需答案的状态可以表示,而该状态又可以转化为相似的子状态,此时就可以考虑dp:如何表示其状态?怎样的状态表示可以方便递推?怎样的状态可以减少枚举复杂度?

对于这道题,我想到了dp,但是却想不出如何转移,看了题解都有点理解不了,在此就整理一下思路。

我们设f[i]表示前i个的期望答案。对于第i位,有0和1两种状态。如果为0,就直接加上f[i-1];如果为1,就算上这一位的贡献。整理下来就是:

f[i]=f[i-1]*(1-p[i])+(f[i-1]+新的贡献)*p[i]=f[i-1]+新的贡献*p[i]

然而我最开始想多了,设成了f[i][0/1]表示这一位是否成功的期望。然而发现这样的不好转移,因为这一位的0和1是有概率的,在对f[i]的定义上都难以说清。

我为什么会想多呢?其实最开始思考新的一个1对答案的贡献的时候,已经推出了(x+1)^3-x^3=3*x^2+3*x+1。但是如何求得之前的x,我一直没有突破。其实这个x很明显是一个期望值,可以定义为 最靠后的连续为1的期望个数。x是可以递推求出的,x^2也是可以求出的(但是要注意期望的平方不是平方的期望)

所以只需要递推出f,x^2,x就可以做了

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; const int N=100000+5; int n;
double p[N],f[N],x1[N],x2[N]; int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lf",&p[i]);
for(int i=1;i<=n;i++){
x1[i]=(x1[i-1]+1)*p[i];
x2[i]=(x2[i-1]+2*x1[i-1]+1)*p[i];
f[i]=f[i-1]+(3*x2[i-1]+3*x1[i-1]+1)*p[i];
}
printf("%.1lf",f[n]);
return 0;
}

总结:

1、所设的dp状态的定义要清晰、方便转移

2、dp不仅是从自己推到自己,有时还需要别的状态转移。如bzoj1426邮票 也是如此(我竟然没有写这道题的博客?虽然理解还不够清晰)

【bzoj4318】【OSU!】期望dp——维护多个期望值递推的更多相关文章

  1. BZOJ4318: OSU! (概率DP)

    题意:一个串 给出每个字符为1的可能性 否则为0 一段连续的1能获得长度的立方的收益 问总收益的期望 题解:设x_i为到第i位时连续的1的期望长度 由i-1递推来的贡献 如果这一位是0没有贡献 如果是 ...

  2. 【BZOJ4318】OSU! 期望DP

    [BZOJ4318]OSU! Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1 ...

  3. CF235B Let's Play Osu! 期望DP

    貌似是一道很裸的期望\(DP\).直接说思路: 设\(f[i]\)表示到\(i\)位置时的期望分数,但是只有\(f[i]\)的话我们发现是无法转移的,我们还需要知道到\(i\)位置时的期望连续长度,于 ...

  4. 【BZOJ】4318: OSU! 期望DP

    [题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...

  5. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  6. 【THUSC2017】【LOJ2981】如果奇迹有颜色 DP BM 打表 线性递推

    题目大意 有一个 \(n\) 个点的环,你要用 \(m\) 中颜色染这 \(n\) 个点. 要求连续 \(m\) 个点的颜色不能是 $1 \sim m $ 的排列. 两种环相同当且仅当这两个环可以在旋 ...

  7. 【CF607B】Zuma——区间dp(记忆化搜索/递推)

    以下是从中文翻译成人话的题面: 给定一个长度小于等于500的序列,每个数字代表一个颜色,每次可以消掉一个回文串,问最多消几次可以消完? (7.16) 这个题从洛谷pend回来以后显示有103个测试点( ...

  8. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  9. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

随机推荐

  1. python小结

    c:\python33添加到你的PATH 环境变量中,你可以在DOS 窗口中 输入以下命令:set path=%path%;C:\python33 id() 方法的返回值就是对象的内存地址. 在#! ...

  2. 孤荷凌寒自学python第四十五天Python初学基础基本结束的下阶段预安装准备

     孤荷凌寒自学python第四十五天Python初学基础基本结束的下阶段预安装准备 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 今天本来应当继续学习Python的数据库操作,但根据过去我自 ...

  3. 台州学院we are without brain 训练 后缀数组

    sa[i]表示排名为 i 的后缀的第一个字符在原串中的位置 rank[i]表示按照从小到大排名  以i为下标开始的后缀的排名 height[i]表示排名为 i 和排名为 i+1的后缀的最长公共前缀的长 ...

  4. JavaWeb笔记(七)Filter&Listener

    Filter 实现Filter接口 一般用于完成通用的操作,如:登陆验证.统一编码处理.敏感字符过滤等 执行流程 执行过滤器 执行放行后的资源 继续执行过滤器放行代码下的代码 配置 拦截路径配置 注解 ...

  5. [转载]GCC 编译使用动态链接库和静态链接库--及先后顺序----及环境变量设置总结

    来自http://blog.csdn.net/benpaobagzb/article/details/51364005 GCC 编译使用动态链接库和静态链接库 1 库的分类 根据链接时期的不同,库又有 ...

  6. linux sed讲解

    1.sed 查找替换 显示某一行或某几行##替换sed 's###g' oldboy.txtsed 's@@@g' oldboy.txt sed -i 's###g' oldboy.txtsed -i ...

  7. js 清除文本中的html标签

    text.replace(/<[^>]+>/g,"");

  8. Dubbo基础介绍

    基础知识 Dubbo是什么:Dubbo是一个分布式的服务框架,提供高性能和透明化的RPC远程调用方案,以及SOA服务治理方案 Dubbo涉及的知识: 远程调用:RMI.hassion.webservi ...

  9. Codeforces 835 F Roads in the Kingdom(树形dp)

    F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...

  10. poj 1390 区间dp

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5035   Accepted: 2065 Descriptio ...