题目来源:http://poj.org/problem?id=1060

题目大意:

  考虑系数为0和1的多项式。两个多项式的加法可以通过把相应次数项的系数相加而实现。但此处我们用模2加法来计算系数之和。一个实例:

(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2

同样,多项式的减法我们在求系数之差时也用模2减法,例如:

(x^6 + x^4 + x^2 + x + 1) - (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2

多项式的乘法与平常的做法一致,但同次项系数相加时使用模二加法,例如:

(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) = x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1

两个多项式f(x)和g(x)模多项式h(x)是求f(x)*g(x)除以h(x)的余数。例如:

(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) modulo (x^8 + x^4 + x^3 + x + 1) = x^7 + x^6 + 1

多项式中最高次数称为degree。给出f(x) g(x)和h(x),写一个程序求出  f(x)*g(x) mod h(x)  的结果。假定f(x)和g(x)的degree都小于h(x),多项式的degree都小于1000。

由于系数都是0或1,假设多项式的degree为d,那么该多项式可以由一个次数指示整数(d + 1)和d+1个二进制位来表示。比如x^7 + x^6 + 1 可表示为: 8 1 1 0 0 0 0 0 1.

输入:由T个测试用例组成,并在输入的第一行给出T的值。每个用例由三行组成,分别为f(x),g(x),h(x)。多项式的表示方法如前所述。

输出:用如前所述的表示方式表达f(x)*g(x)%h(x)的值。每行对应一个输出的多项式。


Sample Input

2
7 1 0 1 0 1 1 1
8 1 0 0 0 0 0 1 1
9 1 0 0 0 1 1 0 1 1
10 1 1 0 1 0 0 1 0 0 1
12 1 1 0 1 0 0 1 1 0 0 1 0
15 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1

Sample Output

8 1 1 0 0 0 0 0 1
14 1 1 0 1 1 0 0 1 1 1 0 1 0 0

模拟题, 需要注意的两个地方:

1. 虽然题目中涉及的f(x) g(x) h(x)和输出的结果r(x)最高次都不会超过1000, 但中间结果f(x) * g(x)的最高次可能会超过1000,最大到2000.

2. 余数为0情况应输出0 0.

第一次用bitset.

 ////////////////////////////////////////////////////////////////
// POJ1060 Modular multiplication of polynomials
// Memory: 224K Time: 63MS
// Language: C++ Result : Accepted
/////////////////////////////////////////////////////////////// #include <iostream>
#include <bitset> using namespace std; bitset<> fx;
bitset<> gx;
bitset<> hx;
bitset<> rx;
int dfx, dgx, dhx, drx; int main(void) {
int T;
cin >> T;
for (int case_id = ; case_id < T; ++case_id) { fx.reset();
gx.reset();
hx.reset();
rx.reset(); //读取输入
cin >> dfx;
int buf;
for (int d = dfx - ; d >= ; --d) {
cin >> buf;
fx[d] = buf;
}
cin >> dgx;
for (int d = dgx - ; d >= ; --d) {
cin >> buf;
gx[d] = buf;
}
cin >> dhx;
for (int d = dhx - ; d >= ; --d) {
cin >> buf;
hx[d] = buf;
} //乘法计算
for (int d1 = dfx - ; d1 >= ; --d1) {
for (int d2 = dgx - ; d2 >= ; --d2) {
rx[d1 + d2] = fx[d1] & gx[d2] ^ rx[d1 + d2];
}
}
for (drx = ; drx >= ; --drx) {
if (rx[drx] == ) {
++drx;
break;
}
} //除法计算
while (drx >= dhx && drx > ) {
int t = drx - dhx;
for (int d = dhx - ; d >= ; --d) {
rx[d + t] = hx[d] ^ rx[d + t];
}
while (drx >= && rx[drx] == ) {
--drx;
}
++drx;
} //输出
cout << drx;
for (int d = drx - ; d > ; --d) {
cout << " " << rx[d];
}
cout << " " << rx[] << endl;
}
return ;
}

附测试数据:


input


output

POJ1060 Modular multiplication of polynomials的更多相关文章

  1. POJ1060 Modular multiplication of polynomials解题报告 (2011-12-09 20:27:53)

    Modular multiplication of polynomials Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3 ...

  2. POJ 1060:Modular multiplication of polynomials

    Modular multiplication of polynomials Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4 ...

  3. POJ 1060 Modular multiplication of polynomials(多项式的加减乘除,除法转化成减法来求)

    题意:给出f(x),g(x),h(x)的 (最高次幂+1)的值,以及它们的各项系数,求f(x)*g(x)/h(x)的余数. 这里多项式的系数只有1或0,因为题目要求:这里多项式的加减法是将系数相加/减 ...

  4. UVALive 2323 Modular Multiplication of Polynomials(模拟)

    这是一个相对简单的模拟,因为运算规则已经告诉了我们,并且比较简单,不要被吓到…… 思路:多项式除以另外一个多项式,如果能除,那么他的最高次一定被降低了,如果最高次不能被降低,那说明已经无法被除,就是题 ...

  5. Lintcode: Hash Function && Summary: Modular Multiplication, Addition, Power && Summary: 长整形long

    In data structure Hash, hash function is used to convert a string(or any other type) into an integer ...

  6. POJ题目排序的Java程序

    POJ 排序的思想就是根据选取范围的题目的totalSubmittedNumber和totalAcceptedNumber计算一个avgAcceptRate. 每一道题都有一个value,value ...

  7. A过的题目

    1.TreeMap和TreeSet类:A - Language of FatMouse ZOJ1109B - For Fans of Statistics URAL 1613 C - Hardwood ...

  8. POJ题目细究

    acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP:  1011   NTA                 简单题  1013   Great Equipment     简单题  102 ...

  9. 【转】POJ百道水题列表

    以下是poj百道水题,新手可以考虑从这里刷起 搜索1002 Fire Net1004 Anagrams by Stack1005 Jugs1008 Gnome Tetravex1091 Knight ...

随机推荐

  1. taglib标签在web.xml文件中报错的解决办法

    报错的原因分析: 在jsp2.0中,且2.4版的DTD验证中,taglib描述符,正确写法是放到<jsp-config></jsp-config>描述符中.所以,我们的tagl ...

  2. iter创建一个可以被迭代的对象

    #!/usr/bin/env python obj = iter([11,22,33,44]) #iter 创建一个可以被迭代的对象 print(obj) r1 = next(obj) print(r ...

  3. loader的意义和内部机制浅析

    意义: loader可以异步的加载数据到我们的activity或者fragment上面,让加载数据的时候ui线程不阻塞. 而且当数据发生变化的时候,还可以及时更新 具体用法参考 http://deve ...

  4. linux所有文件中查找关键字的命令

     grep 192.168.1.1 * -r    在所有文件中查找192.168.1.1

  5. 关于pdf阅读器的选择

    如果只是想简单阅读不做学习笔记.标注之类的 可以直接用chrome firefox打开,它们内部有一个pdf.js实现了pdf标准可以直接阅读. 如果是要批注pdf,就和在纸质书上做笔记.添加书签,那 ...

  6. p1129 [ZJOI2007]矩阵游戏

    传送门 分析 不难想到将黑点的行列连边,然后判断最大匹配是否等于n 代码 #include<iostream> #include<cstdio> #include<cst ...

  7. kindeditor坑

    用document.getElementById("form1").submit提交,存在缓存问题,经常接收不到textarea数据

  8. getUserMedia API

    getUserMedia API 特别有趣的一个 API,能够调用电脑的摄像头,未来这个 API 将被广泛用来让浏览器和用户之间互动. 如果 <video> 标签和 Canvas 现结合 ...

  9. 机器学习初探(手写数字识别)matlab读取数据集

    手写数字识别是机器学习里面的一个经典问题,今天就这一段时间学习的机器学习,花一个下午茶的时间,试试机器学习. 首先数据库是在MNIST(http://yann.lecun.com/exdb/mnist ...

  10. SDUT 3379 数据结构实验之查找七:线性之哈希表

    数据结构实验之查找七:线性之哈希表 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 根据给定 ...