There is a classical process named partition in the famous quick sort algorithm. In this process we typically choose one element as the pivot. Then the elements less than the pivot are moved to its left and those larger than the pivot to its right. Given N distinct positive integers after a run of partition, could you tell how many elements could be the selected pivot for this partition?

For example, given N=5 and the numbers 1, 3, 2, 4, and 5. We have:

  • 1 could be the pivot since there is no element to its left and all the elements to its right are larger than it;
  • 3 must not be the pivot since although all the elements to its left are smaller, the number 2 to its right is less than it as well;
  • 2 must not be the pivot since although all the elements to its right are larger, the number 3 to its left is larger than it as well;
  • and for the similar reason, 4 and 5 could also be the pivot.

Hence in total there are 3 pivot candidates.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N(≤). Then the next line contains N distinct positive integers no larger than 1. The numbers in a line are separated by spaces.

Output Specification:

For each test case, output in the first line the number of pivot candidates. Then in the next line print these candidates in increasing order. There must be exactly 1 space between two adjacent numbers, and no extra space at the end of each line.

Sample Input:

5
1 3 2 4 5

Sample Output:

3
1 4 5
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = ;
const int INF = ;
int a[maxn],leftMax[maxn],rightMin[maxn];
int ans[maxn],num = ;
int main(){
int n;
scanf("%d",&n);
for(int i = ; i < n; i++){
scanf("%d",&a[i]);
}
leftMax[] = ;
for(int i = ; i < n; i++){
leftMax[i] = max(leftMax[i - ], a[i - ]);
}
rightMin[n-] = INF;
for(int i = n - ; i >= ; i--){
rightMin[i] = min(rightMin[i + ],a[i + ]);
}
for(int i = ; i < n; i++){
if(a[i] > leftMax[i] && a[i] < rightMin[i]){
ans[num++] = a[i];
}
}
printf("%d\n",num);
for(int i = ; i < num; i++){
printf("%d",ans[i]);
if(i < num - ) printf(" ");
}
printf("\n");
return ;
}

1101 Quick Sort(25 分的更多相关文章

  1. 【PAT甲级】1101 Quick Sort (25 分)

    题意: 输入一个正整数N(<=1e5),接着输入一行N个各不相同的正整数.输出可以作为快速排序枢纽点的个数并升序输出这些点的值. trick: 测试点2格式错误原因:当答案为0时,需要换行两次

  2. 1101. Quick Sort (25)

    There is a classical process named partition in the famous quick sort algorithm. In this process we ...

  3. PAT (Advanced Level) 1101. Quick Sort (25)

    树状数组+离散化 #include<cstdio> #include<cstring> #include<cmath> #include<map> #i ...

  4. PAT甲题题解-1101. Quick Sort (25)-大水题

    快速排序有一个特点,就是在排序过程中,我们会从序列找一个pivot,它前面的都小于它,它后面的都大于它.题目给你n个数的序列,让你找出适合这个序列的pivot有多少个并且输出来. 大水题,正循环和倒着 ...

  5. A1101 Quick Sort (25 分)

    一.技术总结 这里的一个关键就是理解调换位置排序是时,如果是元主,那么它要确保的条件就只有两个一个是,自己的位置不变,还有就是前面的元素不能有比自己大的. 二.参考代码 #include<ios ...

  6. PAT甲级——1101 Quick Sort (快速排序)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90613846 1101 Quick Sort (25 分)   ...

  7. pat1101. Quick Sort (25)

    1101. Quick Sort (25) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CAO, Peng There is a ...

  8. PAT甲1101 Quick Sort

    1101 Quick Sort (25 分) There is a classical process named partition in the famous quick sort algorit ...

  9. PAT 1101 Quick Sort[一般上]

    1101 Quick Sort(25 分) There is a classical process named partition in the famous quick sort algorith ...

  10. PTA 09-排序3 Insertion or Heap Sort (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/676 5-14 Insertion or Heap Sort   (25分) Accor ...

随机推荐

  1. ACM学习历程—HDU5637 Transform(数论 && 最短路)

    题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给两种操作,然后给你一个s,一个t,求s至少需要多少次操作到t. 考虑到第一种操作是将 ...

  2. Brunch with a Friend 与朋友共进午餐

    brownies 核仁巧克力饼 toast 烤面包 dining room 餐厅 practical 实用的 meal 一餐 combination 组合 pancake 薄煎饼 waffle 华夫饼 ...

  3. [快手(AAuto)学习笔记]如何让程序在运行时请求管理员权限(UAC)

    作者:ffsystem 作为(糟糕的)程序猿,习惯写代码解决一些简单事务.正常用批处理就能解决大部分工作,复杂一点用AutoIt 3. 有时候要分发给别人,就需要一个界面.外行你程序写得如何他看不懂, ...

  4. k8s基础 etcd参数

    name 节点名称data-dir 指定节点的数据存储目录listen-peer-urls 监听URL,用于与其他节点通讯listen-client-urls 对外提供服务的地址:比如 http:// ...

  5. Qt webview调用JavaScript 带参函数

    void MainWindow::on_pushButtonShowMarker_clicked() { QString lat = "104.701681"; QString l ...

  6. 机器学习前沿热点——Deep Learning

    深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像.声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的 ...

  7. Python学习:命令行运行,循环结构

    一.安装配置和运行方法 1.安装OpenCV 3.1: 假设安装目录为"C:\Python34" 2.配置环境变量: 方法一:直接配置:打开"控制面板",搜索& ...

  8. Windows 10 PC 安装 Docker CE

    系统要求 Docker CE 支持 64 位版本的 Windows 10 Pro,且必须开启 Hyper-V. 如果系统是win 10 家庭版安装 docker  很恶心, 我也是废了2天才安装, 由 ...

  9. SSM框架集成Redis

    SSM-Spring+SpringMVC+Mybatis框架相信大家都很熟悉了,但是有的时候需要频繁访问数据库中不变或者不经常改变的数据,就会加重数据库的负担,这时我们就会想起Redis Redis是 ...

  10. 树莓派 Learning 002 装机后的必要操作 --- 05 给树莓派搭建“x86 + pi”环境 -- 安装**32位运行库** -- 解决`E:未发现软件包 xxx` 问题

    树莓派 装机后的必要操作 - 给树莓派搭建"x86 + pi"环境 – 安装32位运行库 – 解决E:未发现软件包 xxx 问题 我的树莓派型号:Raspberry Pi 2 Mo ...