codeforces 1114C
题目连接 : https://codeforces.com/contest/1114/problem/C
题目大意:给一个整数n(1e18>=n>=0),和一个整数k(1e12>=k>=2),问n!在k进制情况下末尾有多少个0.
题目很好理解,思路也很有意思,首先n!在十进制下有多少个0,很好想,10分解质因数有2,5,无论在什么情况下n!中分解出5的个数比2多,
分解是这个意思,5能找出1个5,10能找出一个5,25能找出2个5(因为是5*5,可以被5除两次)。以此类推,找这个东西是log级的。
代码如下:
sum=;//分解出5的个数
d=;//因为要分解5所以是5
while(d<=n){
sum+=n/d;
d*=;
}
进一步推广,要分解k进制,首先k分解质因数,在这里有一个问题,我们只是单单的找质因数中最大的就可以么,这个不一定,我们不知道最大的质因数要
多少个能组成k,虽然说质因数中最大的一定是数量最小的之一,但组成k需要的个数可能会让其他数不够用,比如48,有4个2,和1个3,在4!情况下,有3个2和1个3
这时反而2不够用,那么我们就要记录所有的质因数和需要的个数,然后每个都去找,看看那个最小的就是末尾0 的个数
AC代码:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
using namespace std;
typedef long long ll;
//map<int,int> mp;
#define INT_MAX 1e18;
typedef struct W_w{
ll shu;
ll ge;
}miao;
miao x[];
int main()
{
ll m,n;
scanf("%I64d %I64d",&m,&n);
int d=sqrt(n);
int ge=;
memset(x,,sizeof(x));
for(ll i=;i<=d;i++){
int flag=;
while(n%i==){
flag=;
x[ge].shu=i;
x[ge].ge++;
n/=i;
}
if(flag==) ge++;
}
if(n!=){
x[ge].shu=n;
x[ge].ge=;
ge++;
}
ll minn=INT_MAX;
//printf("%d\n",ge);
for(int i=;i<ge;i++){
ll dd=x[i].shu;
int ha=;
while(dd){
ha++;
dd/=;
}
dd=x[i].shu;
ll sum=;
while(dd<=m){
sum+=m/dd;
int haha=;
ll ddd=dd;
while(ddd){
ddd/=;
haha++;
}
if(haha+ha>) break;
dd*=x[i].shu;
}
minn=min(minn,sum/x[i].ge);
}
printf("%I64d",minn);
return ;
}
codeforces 1114C的更多相关文章
- Codeforces - 1114C - Trailing Loves (or L'oeufs?) - 简单数论
https://codeforces.com/contest/1114/problem/C 很有趣的一道数论,很明显是要求能组成多少个基数. 可以分解质因数,然后统计各个质因数的个数. 比如8以内,有 ...
- Trailing Loves (or L'oeufs?) CodeForces - 1114C (数论)
大意: 求n!在b进制下末尾0的个数 等价于求n!中有多少因子b, 素数分解一下, 再对求出所有素数的最小因子数就好了 ll n, b; vector<pli> A, res; void ...
- 【Codeforces 1114C】Trailing Loves (or L'oeufs?)
[链接] 我是链接,点我呀:) [题意] 问你n!的b进制下末尾的0的个数 [题解] 证明:https://blog.csdn.net/qq_40679299/article/details/8116 ...
- Codeforces 1114C(数论)
题面 传送门 分析 我们先考虑n!在10进制下有多少个0 由于10=2*5, 我们考虑n!的分解式中5的指数,答案显然等于\(\frac{n}{5}+\frac{n}{5^2}+\frac{n}{5^ ...
- python爬虫学习(5) —— 扒一下codeforces题面
上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
- 【Codeforces 738C】Road to Cinema
http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...
- 【Codeforces 738A】Interview with Oleg
http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
随机推荐
- html的Vue.js框架概述
前端的三大框架: Augular.js 由Google的研发团队最先写出 React.js 由facebook的团队继Augular.js之后写出 Vue.js ...
- nginx大量TIME_WAIT的解决办法
1.netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}' 查看time_wait 很大 2.解决此问题需要对sysc ...
- myeclipse-9.0安装svn客户端插件
SVN插件配置到MyEclipse中的步骤 听语音 | 浏览:20471 | 更新:2015-01-09 10:26 | 标签:myeclipse 1 2 3 4 5 6 7 分步阅读 MyEclip ...
- (转)linux正则表达式详解
linux正则表达式详解 http://blog.csdn.net/wuliowen/article/details/64131815 1:什么是正则表达式: 简单的说,正则表达式就是处理字符串的方法 ...
- (转)Linux下PS1、PS2、PS3、PS4使用详解
Linux下PS1.PS2.PS3.PS4使用详解 原文:http://www.linuxidc.com/Linux/2016-10/136597.htm 1.PS1——默认提示符 如下所示,可以通过 ...
- JAVA多线程面试题目
1,java中有几种方法可以实现一个线程? 答:在Java中实现一个线程有两种方法,第一是实现Runnable接口实现它的run()方法,第二种是继承Thread类,覆盖它的run()方法.这两种方法 ...
- python多继承(新式类)一
最近在学习python的多重继承. 先来了解下多重继承的概念,所谓多重继承,是指python的类可以有两个以上父类,也即有类A,类B,类C,C同时继承类A与类B,此时C中可以使用A与B中的属性与方法. ...
- 工作经验(Unity篇)
我的工作是C++开发,主要是做底层,其中绝大部分是给Unity调用的,以下是我的脚印,希望不会重蹈覆辙 Unity具有强大的跨平台性,但是使用到库文件不尽相同,例如Android中就使用so库文件,W ...
- ASP.NET MVC ValidationAttribute 服务器端自定义验证
自己开发的公众号,可以领取淘宝内部优惠券 客户端验证 上文只说了客户端的自定义验证,这样对于用户的输入还是不够可靠,用户完全可以绕过我们定义的客户端验证.所以仅有客户端的验证还是不够的,我们还需要在服 ...
- git&github学习【尚硅谷】
2019/01/17 18:22 集中式版本工具会有单点故障的问题 分布式版本工具能够避免单点故障 git在本地的结构: 团队内部协作: pull push add commit 等等 关于g ...