Jeff got 2n real numbers a1, a2, ..., a2n as a birthday present. The boy hates non-integer numbers, so he decided to slightly "adjust" the numbers he's got. Namely, Jeff consecutively executes n operations, each of them goes as follows:

  • choose indexes i and j (i ≠ j) that haven't been chosen yet;
  • round element ai to the nearest integer that isn't more than ai (assign to ai: ⌊ ai ⌋);
  • round element aj to the nearest integer that isn't less than aj (assign to aj: ⌈ aj ⌉).

Nevertheless, Jeff doesn't want to hurt the feelings of the person who gave him the sequence. That's why the boy wants to perform the operations so as to make the absolute value of the difference between the sum of elements before performing the operations and the sum of elements after performing the operations as small as possible. Help Jeff find the minimum absolute value of the difference.

Input

The first line contains integer n (1 ≤ n ≤ 2000). The next line contains 2n real numbers a1, a2, ..., a2n (0 ≤ ai ≤ 10000), given with exactly three digits after the decimal point. The numbers are separated by spaces.

Output

In a single line print a single real number — the required difference with exactly three digits after the decimal point.

Examples
Input

Copy
3
0.000 0.500 0.750 1.000 2.000 3.000
Output

Copy
0.250
Input

Copy
3
4469.000 6526.000 4864.000 9356.383 7490.000 995.896
Output

Copy
0.279
Note

In the first test case you need to perform the operations as follows: (i = 1, j = 4), (i = 2, j = 3), (i = 5, j = 6). In this case, the difference will equal |(0 + 0.5 + 0.75 + 1 + 2 + 3) - (0 + 0 + 1 + 1 + 2 + 3)| = 0.25.

假设小数部分是x的话,向下取整为-x,向上为1-x;

可以发现不论是向下还是向上都是 -x,那么小数部分就可以统一处理;

那么问题就是当向上取整时,会+1----->求1的个数;

那么枚举就行了;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n;
int m; int main() {
//ios::sync_with_stdio(0);
cin >> n;
m = 2 * n;
double tmp;
int numeq = 0;
double sum = 0.0;
int numdb = 0;
for (int i = 1; i <= m; i++) {
rdlf(tmp);
ll intmp = (ll)tmp;
if (intmp == tmp)numeq++;
else {
sum += 1.0*(tmp - intmp);
numdb++;
}
}
int minn = min(n, numeq);
double ans = inf;
for (int i = 0; i <= minn; i++) {
ans = min(ans, (double)fabs(n - i - sum));
}
printf("%.3lf\n", 1.0*ans);
return 0;
}

CF351A Jeff and Rounding 思维的更多相关文章

  1. Codeforces Round #204 (Div. 2)->C. Jeff and Rounding

    C. Jeff and Rounding time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. CodeForces 352C. Jeff and Rounding(贪心)

    C. Jeff and Rounding time limit per test:  1 second memory limit per test: 256 megabytes input: stan ...

  3. CF&&CC百套计划3 Codeforces Round #204 (Div. 1) A. Jeff and Rounding

    http://codeforces.com/problemset/problem/351/A 题意: 2*n个数,选n个数上取整,n个数下取整 最小化 abs(取整之后数的和-原来数的和) 先使所有的 ...

  4. codeforces A. Jeff and Rounding (数学公式+贪心)

    题目链接:http://codeforces.com/contest/351/problem/A 算法思路:2n个整数,一半向上取整,一半向下.我们设2n个整数的小数部分和为sum. ans = |A ...

  5. cf C. Jeff and Rounding

    http://codeforces.com/contest/352/problem/C 题意:给予N*2个数字,改变其中的N个向上进位,N个向下进位,使最后得到得数与原来数的差的绝对值最小 对每一个浮 ...

  6. Codeforces Round #204 (Div. 2) C. Jeff and Rounding——数学规律

    给予N*2个数字,改变其中的N个向上进位,N个向下进位,使最后得到得数与原来数的差的绝对值最小 考虑小数点后面的数字,如果这些数都非零,则就是  abs(原数小数部分相加-1*n), 多一个0 则 m ...

  7. CF 351A - Jeff and Rounding DP

    http://codeforces.com/problemset/problem/351/C 题意:有2*n个浮点数a1,a2,a3...a2*n,把他们分成n队,对于每对<A,B>,对A ...

  8. CodeForces 352C Jeff and Rounding

    题意 有一个含有\(2n(n \leqslant2000)\)个实数的数列,取出\(n\)个向上取整,另\(n\)个向下取整.问取整后数列的和与原数列的和的差的绝对值. 就是说,令\(a\)为原数列, ...

  9. 数学思维——cf351A

    把每个值的各种贡献算一下即可 /* ai的小数部分为xi,向下取整对答案贡献为xi 向上取整对答案的贡献是xi-1,如果这个数是0,那么对答案的贡献是xi,即如果0向上取整就可以免去-1 然后sum{ ...

随机推荐

  1. Python函数(六)-嵌套函数

    嵌套函数就是在一个函数里再嵌套一个或多个函数 # -*- coding:utf-8 -*- __author__ = "MuT6 Sch01aR" def First(): pri ...

  2. ES6相关实用特性

    本文总结ECMAScript6相关实用特性 目录 let和const 箭头函数 class 对象字段 模板字符串 解构赋值 函数参数扩展 迭代器for...of 模块加载 map和weakmap se ...

  3. VMware:Configuration file was created by a VMware product with more features than this version

    Few days ago,I opened the Genesys demo VM by VMware Server 1.0.4 and got an error like this: "C ...

  4. 为什么in_array(0, ['a', 'b', 'c'])返回true

    为什么in_array(0, ['a', 'b', 'c'])返回true 目录 1 类型转换 2 严格比较 3 false和null 4 数组中有true 在PHP中,数据会自动转换类型后进行比较. ...

  5. 运动事件Motion Events

    备注:运动事件,也是加速度时间,一般像摇晃手机就属于运动事件           监听运动事件对于UI控件有个前提就是监听对象必须是第一响应者(对于UIViewController视图控制器和UIAP ...

  6. @Value在Controller中取值

    一.使用 @Value("${name}")注解可以获取自定义的properties文件中的name值 二.配置 如果只是在applicationcontext.xml中配置,那么 ...

  7. 图片缓存核心类LruCache

    该类类似一个缓存池,具体可参考 http://www.fengfly.com/plus/view-214546-2.html

  8. [P3812][模板]线性基

    解题关键:求异或最大值.线性基模板题. 极大线性无关组的概念. 异或的值域相同. #include<cstdio> #include<cstring> #include< ...

  9. python 爬虫 下载图片

    import os#导入操作系统模块from urllib.request import urlretrieve#下载url对应的文件from urllib.request import urlope ...

  10. Go语言-变量和常量

    我们在这里需要优先说明的是用于声明变量的关键字var,以及用于声明常量的关键字const.要知道,绝大多数的数据类型的值都可以被赋给一个变量,包括函数.而常量则不同,它只能被赋予基本数据类型的值本身. ...