\(\color{#0066ff}{题目描述}\)

给定一个由 \(n\) 行数字组成的数字梯形如下图所示。

梯形的第一行有 \(m\) 个数字。从梯形的顶部的 \(m\) 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径。

分别遵守以下规则:

1.从梯形的顶至底的 \(m\) 条路径互不相交;

2.从梯形的顶至底的 \(m\) 条路径仅在数字结点处相交;

3.从梯形的顶至底的 \(m\) 条路径允许在数字结点相交或边相交。

\(\color{#0066ff}{输入格式}\)

第 \(1\) 行中有 \(2\) 个正整数 \(m\) 和 \(n\),分别表示数字梯形的第一行有 \(m\) 个数字,共有 \(n\) 行。接下来的 \(n\) 行是数字梯形中各行的数字。

第 \(1\) 行有 \(m\) 个数字,第 \(2\) 行有 \(m+1\) 个数字,以此类推。

\(\color{#0066ff}{输出格式}\)

将按照规则 \(1\),规则 \(2\),和规则 \(3\) 计算出的最大数字总和并输出,每行一个最大总和。

\(\color{#0066ff}{输入样例}\)

2 5
2 3
3 4 5
9 10 9 1
1 1 10 1 1
1 1 10 12 1 1

\(\color{#0066ff}{输出样例}\)

66
75
77

\(\color{#0066ff}{数据范围与提示}\)

\(1\leq m,n\leq 20\)

\(\color{#0066ff}{题解}\)

把点权转成边权,每个位置拆点

第一问,所有容量均为1,这样都不会重复

x流到y',让y'连向y,这样进行下次流动

每一个点向下一层到的点连边,最后一层向终点连边

第二问,因为点可以重复,要考虑终点!!!

把x'到x的边改成inf,这样每个点可以接受来自上面多个点的流

还要把连向t的流改成inf,终点位置可能重合!

第三问,中间的所有边改成inf就行,因为终究还是m条路,所以起点的连边还是1

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#define _ 0
#define LL long long
inline LL in() {
LL x = 0, f = 1; char ch;
while (!isdigit(ch = getchar())) (ch == '-') && (f = -f);
while (isdigit(ch)) x = x * 10 + (ch ^ 48), ch = getchar();
return x * f;
}
const int maxn = 105000;
struct node {
int to, dis, can;
node *nxt, *rev;
node(int to = 0, int dis = 0, int can = 0, node *nxt = NULL) : to(to), dis(dis), can(can), nxt(nxt) {}
};
const int inf = 0x7fffffff;
int n, m, s, t, cnt;
std::queue<int> q;
typedef node *nod;
nod head[maxn], road[maxn];
bool vis[maxn];
int dis[maxn], change[maxn], mp[505][550], id[550][505];
inline void add(int from, int to, int can, int dis) {
nod o = new node(to, dis, can, head[from]);
head[from] = o;
}
inline void link(int from, int to, int can, int dis) {
add(from, to, can, dis);
add(to, from, 0, -dis);
head[from]->rev = head[to];
head[to]->rev = head[from];
}
inline bool spfa() {
for (int i = s; i <= t; i++) dis[i] = -inf, change[i] = inf;
dis[s] = 0;
q.push(s);
while (!q.empty()) {
int tp = q.front();
q.pop();
vis[tp] = false;
for (nod i = head[tp]; i; i = i->nxt) {
if (dis[i->to] < dis[tp] + i->dis && i->can > 0) {
dis[i->to] = dis[tp] + i->dis;
change[i->to] = std::min(change[tp], i->can);
road[i->to] = i->rev;
if (!vis[i->to])
vis[i->to] = true, q.push(i->to);
}
}
}
return change[t] != inf;
}
inline int mcmf() {
int flow = 0, cost = 0;
while (spfa()) {
flow += change[t];
cost += change[t] * dis[t];
for (int i = t; i != s; i = road[i]->to) {
road[i]->can += change[t];
road[i]->rev->can -= change[t];
}
}
return cost;
}
inline void partone() {
for (int i = 1; i <= m; i++) link(s, id[1][i], 1, mp[1][i]);
for (int i = 1; i <= m + n - 1; i++) link(id[n][i] + cnt, t, 1, 0);
for (int i = 1; i <= cnt; i++) link(i + cnt, i, 1, 0);
for (int i = 1; i <= n - 1; i++)
for (int j = 1; j <= m + i - 1; j++)
link(id[i][j], id[i + 1][j] + cnt, 1, mp[i + 1][j]),
link(id[i][j], id[i + 1][j + 1] + cnt, 1, mp[i + 1][j + 1]);
printf("%d\n", mcmf());
}
inline void parttwo() {
for (int i = s; i <= t; i++) head[i] = NULL;
for (int i = 1; i <= m; i++) link(s, id[1][i], 1, mp[1][i]);
for (int i = 1; i <= m + n - 1; i++) link(id[n][i] + cnt, t, inf, 0);
for (int i = 1; i <= cnt; i++) link(i + cnt, i, inf, 0);
for (int i = 1; i <= n - 1; i++)
for (int j = 1; j <= m + i - 1; j++)
link(id[i][j], id[i + 1][j] + cnt, 1, mp[i + 1][j]),
link(id[i][j], id[i + 1][j + 1] + cnt, 1, mp[i + 1][j + 1]);
printf("%d\n", mcmf());
}
inline void partthree() {
for (int i = s; i <= t; i++) head[i] = NULL;
for (int i = 1; i <= m; i++) link(s, id[1][i], 1, mp[1][i]);
for (int i = 1; i <= m + n - 1; i++) link(id[n][i] + cnt, t, inf, 0);
for (int i = 1; i <= cnt; i++) link(i + cnt, i, inf, 0);
for (int i = 1; i <= n - 1; i++)
for (int j = 1; j <= m + i - 1; j++)
link(id[i][j], id[i + 1][j] + cnt, inf, mp[i + 1][j]),
link(id[i][j], id[i + 1][j + 1] + cnt, inf, mp[i + 1][j + 1]);
printf("%d\n", mcmf());
}
int main() {
m = in(), n = in();
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m + i - 1; j++) mp[i][j] = in(), id[i][j] = ++cnt;
s = 0, t = (cnt << 1) + 1;
partone(), parttwo(), partthree();
return 0;
}

好像突然清真了。。。

P4013 数字梯形问题的更多相关文章

  1. P4013 数字梯形问题 网络流二十四题

    P4013 数字梯形问题 题目描述 给定一个由 nn 行数字组成的数字梯形如下图所示. 梯形的第一行有 m 个数字.从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形 ...

  2. P4013 数字梯形问题 网络流

    题目描述 给定一个由 nn 行数字组成的数字梯形如下图所示. 梯形的第一行有 mm 个数字.从梯形的顶部的 mm 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径. 分别 ...

  3. 洛谷P4013数字梯形问题——网络流24题

    题目:https://www.luogu.org/problemnew/show/P4013 最大费用最大流裸题: 注意:在第二种情况中,底层所有点连向汇点的边容量应该为inf,因为可以有多条路径结束 ...

  4. 洛谷P4013 数字梯形问题(费用流)

    传送门 两个感受:码量感人……大佬nb…… 规则一:$m$条路径都不相交,那么每一个点只能经过一次,那么考虑拆点,把每一个点拆成$A_{i,j}$和$B_{i,j}$,然后两点之间连一条容量$1$,费 ...

  5. 洛谷P4013 数字梯形问题(费用流)

    题意 $N$行的矩阵,第一行有$M$个元素,第$i$行有$M + i - 1$个元素 问在三个规则下怎么取使得权值最大 Sol 我只会第一问qwq.. 因为有数量的限制,考虑拆点建图,把每个点拆为$a ...

  6. 洛谷 P4013 数字梯形问题【最大费用最大流】

    第一问:因为每个点只能经过一次,所以拆点限制流量,建(i,i',1,val[i]),然后s向第一行建(s,i,1,0),表示每个点只能出发一次,然后最后一行连向汇点(i',t,1,0),跑最大费用最大 ...

  7. 洛谷 P4013 数字梯形问题

    ->题目链接 题解: 网络流. #include<cstdio> #include<iostream> #include<queue> #include< ...

  8. luogu P4013 数字梯形问题

    三倍经验,三个条件,分别对应了常见的3种模型,第一种是限制每个点只能一次且无交点,我们可以把这个点拆成一个出点一个入点,capacity为1,这样就限制了只选择一次,第二种是可以有交点,但不能有交边, ...

  9. 【费用流】【网络流24题】【P4013】 数字梯形问题

    Description 给定一个由 \(n\) 行数字组成的数字梯形如下图所示. 梯形的第一行有 \(m\) 个数字.从梯形的顶部的 \(m\) 个数字开始,在每个数字处可以沿左下或右下方向移动,形成 ...

随机推荐

  1. react过渡动画效果的实现,react-transition-group

    本文介绍react相关的过渡动画效果的实现 有点类似vue的transition组件,主要用于组件mount和unmount之前切换时应用动画效果 安装 cnpm install react-tran ...

  2. vue实用难点讲解

    此篇文章是我基于研究vue文档三遍的基础上,觉得还有点难理解或者难记的知识点总结 列表渲染 1.渲染组件必须加key,并且属性是手动传递给组件的 <my-component v-for=&quo ...

  3. 第一章 深入Web请求过程(待续)

    B/S网络架构概述 如何发起一个请求 HTTP解析 DNS域名解析 CDN工作机制

  4. 第五章 Java中锁

    Lock接口 锁是用来控制多个线程访问共享资源的方式,一般来说,一个锁能够防止多个线程同时访问共享资源(但是有些锁可以允许多个线程并发的访问共享资源,比如读写锁).在Lock接口出现之前,Java程序 ...

  5. Shell编程进阶 1.7 case选择

    逻辑判断的格式 vim case.sh #!/bin/bash read -p "please input a number:" n m=$[$n%] case $m in ) e ...

  6. hive与hbase整合方式和优劣

    分别安装hive 和 hbase 1.在hive中创建与hbase关联的表 create table ganji_ranks (row string,num string) STORED BY 'or ...

  7. 获取字符串长度函数length()和hengthb()

    oracle获取字符串长度函数length()和hengthb() lengthb(string)计算string所占的字节长度:返回字符串的长度,单位是字节 length(string)计算stri ...

  8. python学习笔记(1)python下载及运行

    进入https://www.python.org/官网下载python,根据需要选择2.*或3.*版本 安装完将安装目录添加到环境变量path中 运行cmd,输入python出现版本号即配置成功 下载 ...

  9. js实现导航栏的吸顶操作

    <%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...

  10. css知多少(10)——display(转)

    css知多少(10)——display   1. 引言 网页的所有元素,除了“块”就是“流”,而且“流”都是包含在“块”里面的(最外层的body就是一个“块”).在本系列一开始讲<浏览器默认样式 ...