Java多线程系列 JUC线程池05 线程池原理解析(四)
转载 http://www.cnblogs.com/skywang12345/p/3544116.html https://blog.csdn.net/programmer_at/article/details/79799267
Executor执行Callable任务
Callable 和 Future 是比较有趣的一对组合。当我们需要获取线程的执行结果时,就需要用到它们。Callable用于产生结果,Future用于获取结果。
1. Callable
Callable 是一个接口,它只包含一个call()方法。Callable是一个返回结果并且可能抛出异常的任务。为了便于理解,我们可以将Callable比作一个Runnable接口,而Callable的call()方法则类似于Runnable的run()方法。
Callable的源码如下:
public interface Callable<V> {
V call() throws Exception;
}
说明:从中我们可以看出Callable支持泛型。
2. Future
Future 是一个接口。它用于表示异步计算的结果。提供了检查计算是否完成的方法,以等待计算的完成,并获取计算的结果。
Future的源码如下:
public interface Future<V> {
// 试图取消对此任务的执行。
boolean cancel(boolean mayInterruptIfRunning) // 如果在任务正常完成前将其取消,则返回 true。
boolean isCancelled() // 如果任务已完成,则返回 true。
boolean isDone() // 如有必要,等待计算完成,然后获取其结果。
V get() throws InterruptedException, ExecutionException; // 如有必要,最多等待为使计算完成所给定的时间之后,获取其结果(如果结果可用)。
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}
说明: Future用于表示异步计算的结果。它的实现类是FutureTask,在讲解FutureTask之前,我们先看看Callable, Future, FutureTask它们之间的关系图,如下:
说明:
(01) RunnableFuture是一个接口,它继承了Runnable和Future这两个接口。RunnableFuture的源码如下:
public interface RunnableFuture<V> extends Runnable, Future<V> {
void run();
}
(02) FutureTask实现了RunnableFuture接口。所以,我们也说它实现了Future接口。
示例和源码分析
我们先通过一个示例看看Callable和Future的基本用法,然后再分析示例的实现原理。
import java.util.concurrent.Callable;
import java.util.concurrent.Future;
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ExecutionException; class MyCallable implements Callable { @Override
public Integer call() throws Exception {
int sum = 0;
// 执行任务
for (int i=0; i<100; i++)
sum += i;
//return sum;
return Integer.valueOf(sum);
}
} public class CallableTest1 { public static void main(String[] args)
throws ExecutionException, InterruptedException{
//创建一个线程池
ExecutorService pool = Executors.newSingleThreadExecutor();
//创建有返回值的任务
Callable c1 = new MyCallable();
//执行任务并获取Future对象
Future f1 = pool.submit(c1);
// 输出结果
System.out.println(f1.get());
//关闭线程池
pool.shutdown();
}
}
运行结果:
4950
结果说明:
在主线程main中,通过newSingleThreadExecutor()新建一个线程池。接着创建Callable对象c1,然后再通过pool.submit(c1)将c1提交到线程池中进行处理,并且将返回的结果保存到Future对象f1中。然后,我们通过f1.get()获取Callable中保存的结果;最后通过pool.shutdown()关闭线程池。
1. submit任务,等待线程池execute
1. 执行FutureTask类的get方法时,会把主线程封装成WaitNode节点并保存在waiters链表中, 并阻塞等待运行结果;
2. FutureTask任务执行完成后,通过UNSAFE设置waiters相应的waitNode为null,并通过LockSupport类unpark方法唤醒主线程;
在实际业务场景中,Future和Callable基本是成对出现的,Callable负责产生结果,Future负责获取结果。
1. Callable接口类似于Runnable,只是Runnable没有返回值。
2. Callable任务除了返回正常结果之外,如果发生异常,该异常也会被返回,即Future可以拿到异步执行任务各种结果;
3. Future.get方法会导致主线程阻塞,直到Callable任务执行完成;
1. submit()
submit()在ExecutorService.java中的定义:
<T> Future<T> submit(Callable<T> task); <T> Future<T> submit(Runnable task, T result); Future<?> submit(Runnable task);
submit()在AbstractExecutorService.java中实现,AbstractExecutorService.
submit()实现了ExecutorService.
submit(),并且可以获取执行完的返回值, 而ThreadPoolExecutor是AbstractExecutorService.
submit()的子类,所以submit方法也是ThreadPoolExecutor的方法,它的源码如下:
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
// 创建一个RunnableFuture对象
RunnableFuture<T> ftask = newTaskFor(task);
// 执行“任务ftask”
execute(ftask);
// 返回“ftask”
return ftask;
}
说明:submit()通过newTaskFor(task)创建了RunnableFuture对象ftask。它的源码如下:
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return new FutureTask<T>(callable);
}
通过submit方法提交的Callable任务会被封装成了一个FutureTask对象。通过Executor.execute方法提交FutureTask到线程池中等待被执行,最终执行的是FutureTask的run方法;
2. FutureTask的构造函数
FutureTask的内部状态及构造函数如下:
public class FutureTask<V> implements RunnableFuture<V> { private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6; public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
// callable是一个Callable对象
this.callable = callable;
// state记录FutureTask的状态
this.state = NEW; // ensure visibility of callable
}
}
3. FutureTask的run()方法
我们继续回到submit()的源码中。
在newTaskFor()新建一个ftask对象之后,会通过execute(ftask)执行该任务。此时ftask被当作一个Runnable对象进行执行,最终会调用到它的run()方法;ftask的run()方法在java/util/concurrent/FutureTask.java中实现,源码如下:
public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
// 将callable对象赋值给c。
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
// 执行Callable的call()方法,并保存结果到result中。
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
// 如果运行成功,则将result保存
if (ran)
set(result);
}
} finally {
runner = null;
// 设置“state状态标记”
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
说明:FutureTask.run方法是在线程池中被执行的,而非主线程
1. 通过执行Callable任务的call方法;
2. 如果call执行成功,则通过set方法保存结果,之后调用FutureTask的get()方法,返回的就是通过set(result)保存的值;
3. 如果call执行有异常,则通过setException保存异常;
4. get方法
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}
内部通过awaitDone方法对主线程进行阻塞,具体实现如下:
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
} int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}
说明:
- 如果主线程被中断,则抛出中断异常;
- 判断FutureTask当前的state,如果大于COMPLETING,说明任务已经执行完成,则直接返回;
- 如果当前state等于COMPLETING,说明任务已经执行完,这时主线程只需通过yield方法让出cpu资源,等待state变成NORMAL;
- 通过WaitNode类封装当前线程,并通过UNSAFE添加到waiters链表;
- 最终通过LockSupport的park或parkNanos挂起线程;
Java多线程系列 JUC线程池05 线程池原理解析(四)的更多相关文章
- Java多线程系列--“JUC原子类”05之 AtomicLongFieldUpdater原子类
概要 AtomicIntegerFieldUpdater, AtomicLongFieldUpdater和AtomicReferenceFieldUpdater这3个修改类的成员的原子类型的原理和用法 ...
- Java多线程系列--“JUC线程池”05之 线程池原理(四)
概要 本章介绍线程池的拒绝策略.内容包括:拒绝策略介绍拒绝策略对比和示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3512947.html 拒绝策略 ...
- Java多线程系列--“JUC线程池”06之 Callable和Future
概要 本章介绍线程池中的Callable和Future.Callable 和 Future 简介示例和源码分析(基于JDK1.7.0_40) 转载请注明出处:http://www.cnblogs.co ...
- Java多线程系列--“JUC线程池”02之 线程池原理(一)
概要 在上一章"Java多线程系列--“JUC线程池”01之 线程池架构"中,我们了解了线程池的架构.线程池的实现类是ThreadPoolExecutor类.本章,我们通过分析Th ...
- Java多线程系列--“JUC线程池”03之 线程池原理(二)
概要 在前面一章"Java多线程系列--“JUC线程池”02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包括:线程池示例参考代 ...
- Java多线程系列--“JUC线程池”04之 线程池原理(三)
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3509960.html 本章介绍线程池的生命周期.在"Java多线程系列--“基础篇”01之 基 ...
- Java多线程系列--“JUC锁”05之 非公平锁
概要 前面两章分析了"公平锁的获取和释放机制",这一章开始对“非公平锁”的获取锁/释放锁的过程进行分析.内容包括:参考代码获取非公平锁(基于JDK1.7.0_40)释放非公平锁(基 ...
- Java多线程系列--“基础篇”07之 线程休眠
概要 本章,会对Thread中sleep()方法进行介绍.涉及到的内容包括:1. sleep()介绍2. sleep()示例3. sleep() 与 wait()的比较 转载请注明出处:http:// ...
- Java多线程系列--“基础篇”10之 线程优先级和守护线程
概要 本章,会对守护线程和线程优先级进行介绍.涉及到的内容包括:1. 线程优先级的介绍2. 线程优先级的示例3. 守护线程的示例 转载请注明出处:http://www.cnblogs.com/skyw ...
- Java多线程系列--“JUC集合”05之 ConcurrentSkipListMap
概要 本章对Java.util.concurrent包中的ConcurrentSkipListMap类进行详细的介绍.内容包括:ConcurrentSkipListMap介绍ConcurrentSki ...
随机推荐
- LoadRunner调用md5方法
LoadRunner调用md5方法 上一篇 / 下一篇 2011-04-29 11:25:12 / 个人分类:Loadrunner 查看( 958 ) / 评论( 0 ) / 评分( 0 / 0 ) ...
- lua连接数据库之luasql ------ luasql连接mysql数据库 及 luasql源码编译
lua连接数据库不只luasql这个库,但目前更新最快的的貌似是这个luasql,他是开源的,支持的数据库功能如下: Connect to ODBC, ADO, Oracle, MySQL, SQLi ...
- org.hibernate.service.spi.ServiceException: Unable to create requested service [org.hibernate.engine.jdbc.env.spi.JdbcEnvironment]
© 版权声明:本文为博主原创文章,转载请注明出处 1.问题描述 启动hibernate测试案例时报错如下: 2.解决方案: 2.1 第一次解决:MySQL驱动版本太高.使用的hibernate版本为5 ...
- linux的用户、群组
1. 用户及passwd文件 1) 掌握/etc/passwd文件的功能:存储所有用户的相关信息,该文件也被称为用户信息数据库(Database). 2) /etc/pa ...
- Junit的各种断言
JUnit为我们提供了一些辅助函数,他们用来帮助我们确定被测试的方法是否按照预期的效果正常工作,通常,把这些辅助函数称为断言.下面我们来介绍一下JUnit的各种断言. 1.assertEquals 函 ...
- linux中查找文件并合并文件
find ./src -name '*.txt' -exec cat '{}' \; > test.txt
- nginx http proxy 正向代理
配置 Nginx Http Proxy 代理服务器,与 [Squid] 功能一样,适用于正向代理 Http 网站. 一,Nginx 正向代理配置文件: server { resolver 8.8.8. ...
- MIC的异步传输
关于signal和wait,属于异步传输的语法,即CPU端无需等待offload语句返回,即可异步运行下面的代码.一般用于启动MIC代码段后,并发执行CPU代码,达到同步执行的目的.另外一种用法是使用 ...
- Memcache 统计分析!
status settings status slabs
- 【python系列】python画报表(Chartkick、Flask)(附中文乱码解决方式)
chartkick 能够画 javascript 报表, 并且比較美观.可是网上搜了下.非常难找到 python 版本号的,于是查了些资料,摸索了下. 对 Flask 也不非常熟悉,这里就仅仅抛砖引玉 ...