uva11424:

题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n)

  此题和UVA 11426 一样,不过n的范围只有20000,但是最多有20000组数据。 当初我直接照搬UVA11426,结果超时,因为没有预处理所有的结果(那题n最多4000005,但最多只有100组数据),该题数据太多了额。。。

思路:令sum(n)=gcd(1,n)+gcd(2,n)+...+gcd(n-1,n),则所求结果ans(n)=sum(2)+sum(3)+...+sum(n)
      只需求出sum(n),就可以推出所有答案:ans(n)=ans(n-1)+sum(n)(我当时怎么就没想到呢,额。。。)。
      接下来重点就是求sum(n):
      注意到所有gcd(x,n)都是n的约数,可以按照这个约数进行分类,用g(n,i)表示满足g(x,n)=i且x<n的正整数个数,
      则sum(n)=sum{i*g(n,i)|i是n的约数}。注意到gcd(x,n)=i的充要条件是gcd(x/i,n/i)=1
      (额,我是看到书上的这个提示,才想到怎么做的。。。),因此满足条件的x/i有phi(n/i)个(欧拉函数),说明g(n,i)=phi(n/i)。
      由于时间限制,同素数筛选法,我们需要对于每个i枚举它的倍数n并更新sum(n),这些都在预处理中完成。

 #include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include<iostream>
using namespace std;
int e[];
long long sum[],ans[];
int n;
void deal(){
memset(e,,sizeof(e));
e[]=;
for(int i=;i<;i++){
if(!e[i]){
for(int j=i;j<;j+=i){
if(!e[j])
e[j]=j;
e[j]=e[j]/i*(i-);
}
}
}
}
long long solve(){
deal();
memset(ans,,sizeof(ans));
memset(sum,,sizeof(sum));
long long i,j;
for( i=;i<=;i++)
for( j=*i;j<=;j+=i)
sum[j]+=i*e[j/i];
ans[]=sum[];
for(int i=;i<=;i++)
ans[i]=ans[i-]+sum[i];
}
int main(){
solve();
while(~scanf("%d",&n)&&n)
printf("%lld\n",ans[n]); }

GCD - Extreme (II)的更多相关文章

  1. UVA 11426 GCD - Extreme (II) (欧拉函数)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Problem JGCD Extreme (II)Input: Standard ...

  2. UVA 11426 - GCD - Extreme (II) (数论)

    UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...

  3. 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)

    [UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...

  4. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  5. GCD - Extreme (II) for(i=1;i<N;i++) for(j=i+1;j<=N;j++) { G+=gcd(i,j); } 推导分析+欧拉函数

    /** 题目:GCD - Extreme (II) 链接:https://vjudge.net/contest/154246#problem/O 题意: for(i=1;i<N;i++) for ...

  6. USACO GCD Extreme(II)

    题目大意:求gcd(1,2)+gcd(1,3)+gcd(2,3)+...+gcd(n-1,n) ---------------------------------------------------- ...

  7. UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

  8. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  9. uva11426 GCD Extreme(II)

    题意:求sum(gcd(i,j),1<=i<j<=n)1<n<4000001 思路: 1.建立递推关系,s(n)=s(n-1)+gcd(1,n)+gcd(2,n)+……+ ...

  10. Uva_11462 GCD - Extreme (II)

    题目链接 题意: 给定一个n, 求:GCD(1, 2) + GCD(1, 3) + GCD(2, 3) + …… + GCD(1, n) + GCD(2, n) + …… + GCD(n-1, n); ...

随机推荐

  1. [CSS] @keyframes

    @keyframes swing{ 0% { transform: rotate(0deg)} 100% {transform: rotate(-30deg)} } #sweetlandia{ ani ...

  2. switch-case参数类型

    switch语句用法: 0. switch语句由一个控制表达式和多个case标签组成 1. switch控制表达式支持的类型有byte.short.char.int.enum(JDK5).String ...

  3. Log4J2基本配置

    [1]. Log4J2入门: <1>. 导入Jar包: log4j-api-2.0-beta9.jar log4j-core-2.0-beta9.jar <2>. 编写代码: ...

  4. 关于javascript dom扩展:Selector API

    众多javascript库中最常用的一项功能,就是根据css选择符选择与某个模式匹配的DOM元素.之前由于对javascript的认识较低,对javascript对DOM操作还停留在getElemen ...

  5. atoi、stoi、strtoi区别

    首先atoi和strtol都是c里面的函数,他们都可以将字符串转为int,它们的参数都是const char*,因此在用string时,必须调c_str()方法将其转为char*的字符串.或者atof ...

  6. C#中的三种 加密解密

    刚刚学会的C#的加密与解密(三种)MD5加密/RSA加密与解密/DES加密.也是刚刚申请的blog随便发布一下. (一).MD5加密 MD5 md5 = new MD5CryptoServicePro ...

  7. 自定义Window 服务

    自定义window 服务 开发到使用的流程: 1.完成对应的代码之后(代码在底下),右键MyService.cs 添加安装程序 2.添加window服务安装程序打开Service1.cs[设计]页面, ...

  8. xpath 操作XML

    1.xpath 操作XML,底下部分代码被注释了,但是是完整功能,去除注释是正常使用的(有写命名和其他冲突,所以注释了) 总体有:完整读取xml,对xml的增删改查,对xml的特定操作 using S ...

  9. angularjs ngTable -Custom filter template-calendar

    jsp页面: <script type="text/ng-template" id="path/to/your/filters/top-Date-One.html& ...

  10. SQL Server死锁日志各字段含义

    使用跟踪标记 1204 --打开跟踪标记 DBCC TRACEON (1204,-1) --关闭跟踪标记 DBCC TRACEOFF (1204,-1) 处于死锁状态时,跟踪标记 1204 在等待的线 ...