GCD - Extreme (II)
uva11424:
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n)
此题和UVA 11426 一样,不过n的范围只有20000,但是最多有20000组数据。 当初我直接照搬UVA11426,结果超时,因为没有预处理所有的结果(那题n最多4000005,但最多只有100组数据),该题数据太多了额。。。
思路:令sum(n)=gcd(1,n)+gcd(2,n)+...+gcd(n-1,n),则所求结果ans(n)=sum(2)+sum(3)+...+sum(n)
只需求出sum(n),就可以推出所有答案:ans(n)=ans(n-1)+sum(n)(我当时怎么就没想到呢,额。。。)。
接下来重点就是求sum(n):
注意到所有gcd(x,n)都是n的约数,可以按照这个约数进行分类,用g(n,i)表示满足g(x,n)=i且x<n的正整数个数,
则sum(n)=sum{i*g(n,i)|i是n的约数}。注意到gcd(x,n)=i的充要条件是gcd(x/i,n/i)=1
(额,我是看到书上的这个提示,才想到怎么做的。。。),因此满足条件的x/i有phi(n/i)个(欧拉函数),说明g(n,i)=phi(n/i)。
由于时间限制,同素数筛选法,我们需要对于每个i枚举它的倍数n并更新sum(n),这些都在预处理中完成。
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include<iostream>
using namespace std;
int e[];
long long sum[],ans[];
int n;
void deal(){
memset(e,,sizeof(e));
e[]=;
for(int i=;i<;i++){
if(!e[i]){
for(int j=i;j<;j+=i){
if(!e[j])
e[j]=j;
e[j]=e[j]/i*(i-);
}
}
}
}
long long solve(){
deal();
memset(ans,,sizeof(ans));
memset(sum,,sizeof(sum));
long long i,j;
for( i=;i<=;i++)
for( j=*i;j<=;j+=i)
sum[j]+=i*e[j/i];
ans[]=sum[];
for(int i=;i<=;i++)
ans[i]=ans[i-]+sum[i];
}
int main(){
solve();
while(~scanf("%d",&n)&&n)
printf("%lld\n",ans[n]); }
GCD - Extreme (II)的更多相关文章
- UVA 11426 GCD - Extreme (II) (欧拉函数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Problem JGCD Extreme (II)Input: Standard ...
- UVA 11426 - GCD - Extreme (II) (数论)
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...
- 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- GCD - Extreme (II) for(i=1;i<N;i++) for(j=i+1;j<=N;j++) { G+=gcd(i,j); } 推导分析+欧拉函数
/** 题目:GCD - Extreme (II) 链接:https://vjudge.net/contest/154246#problem/O 题意: for(i=1;i<N;i++) for ...
- USACO GCD Extreme(II)
题目大意:求gcd(1,2)+gcd(1,3)+gcd(2,3)+...+gcd(n-1,n) ---------------------------------------------------- ...
- UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)
题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...
- UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...
- uva11426 GCD Extreme(II)
题意:求sum(gcd(i,j),1<=i<j<=n)1<n<4000001 思路: 1.建立递推关系,s(n)=s(n-1)+gcd(1,n)+gcd(2,n)+……+ ...
- Uva_11462 GCD - Extreme (II)
题目链接 题意: 给定一个n, 求:GCD(1, 2) + GCD(1, 3) + GCD(2, 3) + …… + GCD(1, n) + GCD(2, n) + …… + GCD(n-1, n); ...
随机推荐
- Ruby学习笔记(二)
1.block 代码块 do...end 或 {} 构成一个代码块,就像常见的 .each后面跟的代码块. my_nums = [1,2,3] my_double_nums = my_nums.col ...
- Android 仿PhotoShop调色板应用(四) 不同区域颜色选择的颜色生成响应
版权声明:本文为博主原创文章,未经博主允许不得转载. Android 仿PhotoShop调色板应用(四) 不同区域颜色选择的颜色生成响应 上一篇讲过了主体界面的绘制,这里讲解调色板应用中的另外一 ...
- 提取DLL类库代码
@SET destFolder=.\bin@XCOPY /I /Y %SYSTEMDRIVE%\WINDOWS\assembly\GAC_MSIL\Microsoft.ReportViewer.Pro ...
- Java基础知识强化10:Java中的中间缓存变量机制
1.对于自增运算++j与j++,由于加一的执行顺序不同,所以Java中有中间缓存变量来储存其单个表达式的值,而j的自增自减的结果依然保留在原来的变量储存区.因为本体是j的值,而单个表达式的值是中间产生 ...
- JQuery的$命名冲突详细解析
在Jquery中,$是JQuery的别名,所有使用$的地方也都可以使用JQuery来替换,如$('#msg')等同于JQuery('#msg')的写法.然而,当我们引入多个js库后,在另外一个js库中 ...
- gulp完成javascript压缩合并,css压缩
最近需要对项目进行优化,主要是对js的压缩合并和css文件的压缩,查找相关资料之后发现gulp可以实现相关的功能,特此分享一下使用心得. 1.安装gulp gulp是基于Node.js的前端构建工具. ...
- ORACLE每组只保留一条记录
删除同一组内其他记录 DELETE from memactivities a where exists(select 1 FROM (select Uuid,ci_no,lst_upd_ts,ROW_ ...
- Android- Activity not found
今天调试代码的时候,出现很奇怪的现象: \XX\bin\Home.apk installed on device. 一般来说即使已经装到设备中,也没有这个提示,况且更奇怪的是,程序并又有自动运行.查看 ...
- c#中的interface abstract与virtual
interface用来声明接口1.只提供一些方法规约,不提供方法主体 如 public interface IPerson { void getName();//不包含方法主体 }2.方法不能 ...
- UITableViewCell 左滑删除
- (BOOL)tableView:(UITableView *)tableView canEditRowAtIndexPath:(NSIndexPath *)indexPath { return Y ...