leecode 每日解题思路 127-Factorial Trailing Zeroes
原题描述:
原题地址: Factorial Trailing Zeroes
题目描述很直接, 给出一个整数N, 求这个N的阶乘后尾有几个零。(要求O(logN)时间复杂度)
个人思路:
一开始,最简单的思维就是直接求要知道, n!的增长速度, 比O(n^2)还要大, 对于32位整型来说, 当N=13的时候, 数据就已经开始溢出了,
好吧, 就算使用long型也是到N=21时,表示数位也不够用了,
那么, 这条路其实是走不通的, (就算考虑使用大数阶乘解决方案, 但这背离了这道题目的初衷,而且也达不到O(logN)的时间复杂度要求):
到这里, 我们先想想,1~10这十个数字,那些数相乘后有末尾零,也就是10的倍数?,显而易见的,只有碰到任意的偶数与5的倍数相乘是,才有得
才会多出一个零。 从而, 我们这边5的倍数这个元素就是关键点。
其实,到了上一步,这个问题已经解决掉一半了, 剩下的工作就是求取给出的1~N个数里, 存在几个5的倍数, done!
当时我就觉得问题已经解决,而且时间复杂度只有O(1)呢 : )
马上提交, 结果呵呵:Wrong Anwser
但是觉得30里不就6个5的倍数么, 得到的数尾应该就是6个零才对啊,然后我仔细盯着着这6个数:
机智的朋友们应该一经发现了, 可是我却呆了一会才发现, 老子当时就是一拍大腿: "卧槽, 还有一种情况没有考虑!"
没错, 就是这个罪魁祸首, 虽然他也是5的倍数, 但是他是5的n次数(包括其倍数, 例如25*4 = 100,100/10 = 10, 还是5的倍数,就是这种情况没考虑), 也就是意味他需要n次消化掉才不会有, 既然还要考虑到5的n次, 那么, 每次每隔5一次数, 然后再在结果中隔5取一次数, done!
这次也是果断提交(时间复杂度 O(log(N)), 底数为5, 肯定比默认底数为2来的更快。):duang!
另外, 关于执行速度, 貌似用C的话, 递归反而是最快的, 我估计是测试用例的问题吧, 反正不在今天的讨论范围,有兴趣的同学自己研究下,或者在评论区指教下,谢谢!
leecode 每日解题思路 127-Factorial Trailing Zeroes的更多相关文章
- leecode 每日解题思路 152 Maximun Product Subarray
问题描述: 问题链接:152 Maximum Product Subarray 在经典的算法解析中, 有关的分治和动态规划的,经典题型之一就是求最大子段和, 这道题就是他的变形:求最大子段积; 这个问 ...
- leecode 每日解题思路 64 Minimum Path Sum
题目描述: 题目链接:64 Minimum Path Sum 问题是要求在一个全为正整数的 m X n 的矩阵中, 取一条从左上为起点, 走到右下为重点的路径, (前进方向只能向左或者向右),求一条所 ...
- leecode 每日解题思路 102-Binary Tree Level Order Traversal
題目描述: 题目链接: 102-Binary Tree Level Order Traversal 这个问题要解决的是如何逐层遍历一个二叉树,并把同一层元素放入同一list中, 再将所有元素返回. 其 ...
- LeetCode172 Factorial Trailing Zeroes. LeetCode258 Add Digits. LeetCode268 Missing Number
数学题 172. Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. N ...
- 【LeetCode】172. Factorial Trailing Zeroes
Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. Note: Your ...
- LeetCode Day4——Factorial Trailing Zeroes
/* * Problem 172: Factorial Trailing Zeroes * Given an integer n, return the number of trailing zero ...
- LeetCode Factorial Trailing Zeroes Python
Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. 题目意思: n求阶乘 ...
- LeetCode 172. 阶乘后的零(Factorial Trailing Zeroes)
172. 阶乘后的零 172. Factorial Trailing Zeroes 题目描述 给定一个整数 n,返回 n! 结果尾数中零的数量. LeetCode172. Factorial Trai ...
- LeetCode_172. Factorial Trailing Zeroes
172. Factorial Trailing Zeroes Easy Given an integer n, return the number of trailing zeroes in n!. ...
随机推荐
- ArcGis 在线地图相关资源
原文:ArcGis 在线地图相关资源 世界边界和地点:http://services.arcgisonline.com/ArcGIS/rest/services/Reference/World_Bou ...
- datetime 和 smalldatetime
用于表示某天的日期和时间的数据类型. datetime 和 smalldatetime 表示某天的日期和时间. 数据类型 范围 精确度 datetime 1753 年 1 月 1 日到 9999 年 ...
- Android 设置控件可见与不可见
通常控件的可见与不可见分为三种情况 第一种 gone 表示不可见并且不占用空间 第二种 visible 表示可见 第三种 invisible 表示不 ...
- 手势识别官方教程(3)识别移动手势(识别速度用VelocityTracker)
moving手势在onTouchEvent()或onTouch()中就可识别,编程时主要是识别积云的速度用VelocityTracker等, Tracking Movement This lesson ...
- 如何用C#获得文件信息以及扩展信息
在C#中获得文件信息很容易,只需要用FileInfo类或者FileVersionInfo类就可以获得,但是如果想要获得文件的扩展信息,则无法从这两类来获得.不过在C#中,这也不是件难事,只要引入“Mi ...
- Android 所有颜色代码
colors.xml <?xml version="1.0" encoding="utf-8" ?> <resources> <c ...
- 面试准备--Spring(AOP)
AOP:面向切面编程,在执行某个指令时,需要添加某个预编译的指令. 下面这个例子是来自网上的: 1.OOP回顾 在介绍AOP之前先来回顾一下大家都比较熟悉的OOP(Object Oriented Pr ...
- html的两种提交按钮submit和button
转自:http://baiying.blog.51cto.com/1068039/1319784 html按钮有两种: <input type="button" value= ...
- HUFFMAN 树
在一般的数据结构的书中,树的那章后面,著者一般都会介绍一下哈夫曼(HUFFMAN) 树和哈夫曼编码.哈夫曼编码是哈夫曼树的一个应用.哈夫曼编码应用广泛,如 JPEG中就应用了哈夫曼编码. 首先介绍什么 ...
- HW5.12
public class Solution { public static void main(String[] args) { printChars('1', 'Z', 10); } public ...