DIV1 250pt

题意:给定一个正整数n(n <= 10^18),如果n = p^q,其中p为质数,q > 1,则返回vector<int> ans = {p, q},否则返回ans =  {}。

解法:首先,看到题的第一想法是,枚举p。而由于n的范围太大,O(10^9)的复杂度不能接受。又想到,如果题目的限制为q > 2,那么枚举的复杂度就降到了O(10^6),可以接受了。故得到算法,特判n可不可以表示成p ^ 2的形式(注意判定p是不是质数),然后再从1到10^6枚举看n能不能表示成p^q,其中q > 2。这样,问题能够得到解决,但是编码复杂度比较高,最后我写出来只拿到了160+分。

   然后看了题解,枚举q...因为10^18 < 2^60,所以q的范围小于60。然后枚举就行了。注意三点,一、枚举的方法可以直接用pow来对n开方,也可以二分,前者会涉及浮点数但是好写。二、枚举的过程中算多少次方不需要快速幂,直接算容易写而且时间复杂度够。三、计算过程中要注意会不会爆long long,如果快爆long long直接返回-1或者0。

tag:math

解法一:

  1. // BEGIN CUT HERE
  2. /*
  3. * Author: plum rain
  4. * score :
  5. */
  6. /*
  7.  
  8. */
  9. // END CUT HERE
  10. #line 11 "StrongPrimePower.cpp"
  11. #include <sstream>
  12. #include <stdexcept>
  13. #include <functional>
  14. #include <iomanip>
  15. #include <numeric>
  16. #include <fstream>
  17. #include <cctype>
  18. #include <iostream>
  19. #include <cstdio>
  20. #include <vector>
  21. #include <cstring>
  22. #include <cmath>
  23. #include <algorithm>
  24. #include <cstdlib>
  25. #include <set>
  26. #include <queue>
  27. #include <bitset>
  28. #include <list>
  29. #include <string>
  30. #include <utility>
  31. #include <map>
  32. #include <ctime>
  33. #include <stack>
  34.  
  35. using namespace std;
  36.  
  37. #define CLR(x) memset(x, 0, sizeof(x))
  38. #define CLR1(x) memset(x, -1, sizeof(x))
  39. #define PB push_back
  40. #define SZ(v) ((int)(v).size())
  41. #define zero(x) (((x)>0?(x):-(x))<eps)
  42. #define out(x) cout<<#x<<":"<<(x)<<endl
  43. #define tst(a) cout<<#a<<endl
  44. #define CINBEQUICKER std::ios::sync_with_stdio(false)
  45.  
  46. typedef vector<int> VI;
  47. typedef vector<string> VS;
  48. typedef vector<double> VD;
  49. typedef pair<int, int> pii;
  50. typedef long long int64;
  51.  
  52. const double eps = 1e-;
  53. const double PI = atan(1.0)*;
  54. const int maxint = ;
  55. const int maxx = ;
  56.  
  57. int all;
  58. bool vis[maxx];
  59. int prm[maxx];
  60.  
  61. void sieve(int n)
  62. {
  63. int m = (int)sqrt(n+0.5);
  64. CLR (vis); vis[] = vis[] = ;
  65. for (int64 i = ; i <= m; ++ i) if (!vis[i])
  66. for (int64 j = i*i; j <= n; j += i) vis[j] = ;
  67.  
  68. }
  69.  
  70. int primes(int n)
  71. {
  72. sieve(n);
  73. int ret = ;
  74. for (int i = ; i <= n; ++ i)
  75. if (!vis[i]) prm[ret++] = i;
  76. return ret;
  77.  
  78. }
  79.  
  80. bool ok(int64 n)
  81. {
  82. if (n <= ) return (!vis[n]);
  83.  
  84. for (int i = ; i < all; ++ i)
  85. if ((n % prm[i]) == ){
  86. return ;
  87. }
  88. return ;
  89. }
  90.  
  91. int gao1(int64 n)
  92. {
  93. int64 m = (int64)sqrt(n + 0.5);
  94. if (m*m != n) return -;
  95.  
  96. if (ok(m)) return m;
  97. return -;
  98. }
  99.  
  100. pii gao2(int64 n)
  101. {
  102. int ret;
  103. pii tmp;
  104. for (int i = ; i < all; ++ i) if ((n % prm[i]) == ){
  105. ret = ;
  106. while ((n % prm[i]) == ) {
  107. ++ ret;
  108. n /= prm[i];
  109. }
  110. if (ret > && n == ){
  111. tmp.first = prm[i];
  112. tmp.second = ret;
  113. return tmp;
  114. }
  115. else{
  116. tmp.first = -;
  117. return tmp;
  118. }
  119. }
  120. tmp.first = -;
  121. return tmp;
  122. }
  123.  
  124. int64 gao(string n)
  125. {
  126. int64 ret = ;
  127. for (int i = ; i < n.size(); ++ i)
  128. ret = ret * + n[i] - '';
  129. return ret;
  130. }
  131.  
  132. class StrongPrimePower
  133. {
  134. public:
  135. vector <int> baseAndExponent(string N){
  136. all = primes();
  137. int64 n = gao(N);
  138.  
  139. int64 tmp = gao1(n);
  140. vector<int> ans;
  141. ans.clear();
  142. if (tmp != -){
  143. ans.PB ((int)tmp); ans.PB ();
  144. return ans;
  145. }
  146. pii t = gao2(n);
  147. if (t.first != -){
  148. ans.PB (t.first); ans.PB (t.second);
  149. return ans;
  150. }
  151. return ans;
  152. }
  153.  
  154. // BEGIN CUT HERE
  155. public:
  156. void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0(); if ((Case == -) || (Case == )) test_case_1(); if ((Case == -) || (Case == )) test_case_2(); if ((Case == -) || (Case == )) test_case_3(); if ((Case == -) || (Case == )) test_case_4(); if ((Case == -) || (Case == )) test_case_5(); }
  157. private:
  158. template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
  159. void verify_case(int Case, const vector <int> &Expected, const vector <int> &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: " << print_array(Expected) << endl; cerr << "\tReceived: " << print_array(Received) << endl; } }
  160. void test_case_0() { string Arg0 = ""; int Arr1[] = {, }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); verify_case(, Arg1, baseAndExponent(Arg0)); }
  161. void test_case_1() { string Arg0 = ""; int Arr1[] = { }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); verify_case(, Arg1, baseAndExponent(Arg0)); }
  162. void test_case_2() { string Arg0 = ""; int Arr1[] = { }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); verify_case(, Arg1, baseAndExponent(Arg0)); }
  163. void test_case_3() { string Arg0 = ""; int Arr1[] = { }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); verify_case(, Arg1, baseAndExponent(Arg0)); }
  164. void test_case_4() { string Arg0 = ""; int Arr1[] = {, }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); verify_case(, Arg1, baseAndExponent(Arg0)); }
  165. void test_case_5() { string Arg0 = ""; int Arr1[] = {, }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); verify_case(, Arg1, baseAndExponent(Arg0)); }
  166.  
  167. // END CUT HERE
  168.  
  169. };
  170.  
  171. // BEGIN CUT HERE
  172. int main()
  173. {
  174. // freopen( "a.out" , "w" , stdout );
  175. StrongPrimePower ___test;
  176. ___test.run_test(-);
  177. return ;
  178. }
  179. // END CUT HERE

解法二:

  1. // BEGIN CUT HERE
  2. /*
  3. * Author: plum rain
  4. * score :
  5. */
  6. /*
  7.  
  8. */
  9. // END CUT HERE
  10. #line 11 "StrongPrimePower.cpp"
  11. #include <sstream>
  12. #include <stdexcept>
  13. #include <functional>
  14. #include <iomanip>
  15. #include <numeric>
  16. #include <fstream>
  17. #include <cctype>
  18. #include <iostream>
  19. #include <cstdio>
  20. #include <vector>
  21. #include <cstring>
  22. #include <cmath>
  23. #include <algorithm>
  24. #include <cstdlib>
  25. #include <set>
  26. #include <queue>
  27. #include <bitset>
  28. #include <list>
  29. #include <string>
  30. #include <utility>
  31. #include <map>
  32. #include <ctime>
  33. #include <stack>
  34.  
  35. using namespace std;
  36.  
  37. #define CLR(x) memset(x, 0, sizeof(x))
  38. #define CLR1(x) memset(x, -1, sizeof(x))
  39. #define PB push_back
  40. #define SZ(v) ((int)(v).size())
  41. #define zero(x) (((x)>0?(x):-(x))<eps)
  42. #define out(x) cout<<#x<<":"<<(x)<<endl
  43. #define tst(a) cout<<#a<<endl
  44. #define CINBEQUICKER std::ios::sync_with_stdio(false)
  45.  
  46. typedef vector<int> VI;
  47. typedef vector<string> VS;
  48. typedef vector<double> VD;
  49. typedef pair<int, int> pii;
  50. typedef long long int64;
  51.  
  52. const double eps = 1e-;
  53. const double PI = atan(1.0)*;
  54. const int maxint = ;
  55.  
  56. int64 gao(string n)
  57. {
  58. int64 ret = ;
  59. for (int i = ; i < n.size(); ++ i)
  60. ret = ret * + n[i] - '';
  61. return ret;
  62. }
  63.  
  64. int64 mypow(int64 p, int64 n)
  65. {
  66. unsigned long long ret = ;
  67. for (int i = ; i < n; ++ i){
  68. ret *= p;
  69. if (ret > 1e18) return -;
  70. }
  71. return ret;
  72. }
  73.  
  74. bool ok(int y)
  75. {
  76. for (int64 i = ; i*i <= y; ++ i)
  77. if (y % i == ) return ;
  78. return ;
  79. }
  80.  
  81. int gao(int64 n, int num)
  82. {
  83. int x = (int)pow(n, 1.0 / (double)num), y = -;
  84. for (int i = -; i < ; ++ i)
  85. if (mypow(x+i,num) == n && ok(x+i)) y = x + i;
  86. return y;
  87. }
  88.  
  89. class StrongPrimePower
  90. {
  91. public:
  92. vector <int> baseAndExponent(string N){
  93. int64 n = gao(N);
  94. VI ret; ret.clear();
  95. pii ans;
  96. for (int i = ; i < ; ++ i){
  97. int tmp = gao(n, i);
  98. if (tmp == -) continue;
  99. ret.PB (tmp); ret.PB (i);
  100. }
  101. return ret;
  102. }
  103.  
  104. // BEGIN CUT HERE
  105. public:
  106. void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0(); if ((Case == -) || (Case == )) test_case_1(); if ((Case == -) || (Case == )) test_case_2(); if ((Case == -) || (Case == )) test_case_3(); if ((Case == -) || (Case == )) test_case_4(); if ((Case == -) || (Case == )) test_case_5(); }
  107. //void run_test(int Case) { if ((Case == -1) || (Case == 0)) test_case_0();}
  108. private:
  109. template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
  110. void verify_case(int Case, const vector <int> &Expected, const vector <int> &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: " << print_array(Expected) << endl; cerr << "\tReceived: " << print_array(Received) << endl; } }
  111. void test_case_0() { string Arg0 = ""; int Arr1[] = {}; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); verify_case(, Arg1, baseAndExponent(Arg0)); }
  112. void test_case_1() { string Arg0 = ""; int Arr1[] = { }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); verify_case(, Arg1, baseAndExponent(Arg0)); }
  113. void test_case_2() { string Arg0 = ""; int Arr1[] = { }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); verify_case(, Arg1, baseAndExponent(Arg0)); }
  114. void test_case_3() { string Arg0 = ""; int Arr1[] = { }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); verify_case(, Arg1, baseAndExponent(Arg0)); }
  115. void test_case_4() { string Arg0 = ""; int Arr1[] = {, }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); verify_case(, Arg1, baseAndExponent(Arg0)); }
  116. void test_case_5() { string Arg0 = ""; int Arr1[] = {, }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); verify_case(, Arg1, baseAndExponent(Arg0)); }
  117.  
  118. // END CUT HERE
  119.  
  120. };
  121.  
  122. // BEGIN CUT HERE
  123. int main()
  124. {
  125. // freopen( "a.out" , "w" , stdout );
  126. StrongPrimePower ___test;
  127. ___test.run_test(-);
  128. return ;
  129. }
  130. // END CUT HERE

DIV1 500pt

题意:每次翻转操作r(l, r)即是将s中(l, r)的子串反转,比如对abcde进行r(0, 3)即变为cbade。进行一系列翻转变化有一个要求,即r(l1, r1), r(l2, r2), r(l3, r3), r(l4, r4),需l1<=l2<=l3<=l4,r4>=r3>=r2>=r1。要将string s变为string g,求最少所需翻转次数。

解法:就是一个裸DP,但是我对在字符串上的dp好像一窍不通。。。。。什么时候应该挂点字符串dp的专题来刷了。具体数组设置和状态转移方程可以看官方题解,很简单。点击打开官方题解。

tag:字符串,DP

  1. // BEGIN CUT HERE
  2. /*
  3. * Author: plum rain
  4. * score :
  5. */
  6. /*
  7.  
  8. */
  9. // END CUT HERE
  10. #line 11 "ReversalChain.cpp"
  11. #include <sstream>
  12. #include <stdexcept>
  13. #include <functional>
  14. #include <iomanip>
  15. #include <numeric>
  16. #include <fstream>
  17. #include <cctype>
  18. #include <iostream>
  19. #include <cstdio>
  20. #include <vector>
  21. #include <cstring>
  22. #include <cmath>
  23. #include <algorithm>
  24. #include <cstdlib>
  25. #include <set>
  26. #include <queue>
  27. #include <bitset>
  28. #include <list>
  29. #include <string>
  30. #include <utility>
  31. #include <map>
  32. #include <ctime>
  33. #include <stack>
  34.  
  35. using namespace std;
  36.  
  37. #define CLR(x) memset(x, 0, sizeof(x))
  38. #define CLR1(x) memset(x, -1, sizeof(x))
  39. #define PB push_back
  40. #define SZ(v) ((int)(v).size())
  41. #define zero(x) (((x)>0?(x):-(x))<eps)
  42. #define out(x) cout<<#x<<":"<<(x)<<endl
  43. #define tst(a) cout<<#a<<endl
  44. #define CINBEQUICKER std::ios::sync_with_stdio(false)
  45.  
  46. typedef vector<int> VI;
  47. typedef vector<string> VS;
  48. typedef vector<double> VD;
  49. typedef pair<int, int> pii;
  50. typedef long long int64;
  51.  
  52. const double eps = 1e-;
  53. const double PI = atan(1.0)*;
  54. const int maxint = ;
  55. const int inf = maxint;
  56.  
  57. int d[][][][];
  58.  
  59. class ReversalChain
  60. {
  61. public:
  62. int minReversal(string s, string g){
  63. CLR (d);
  64. int n = s.size();
  65. for (int i = ; i < n; ++ i)
  66. for (int j = ; j < n; ++ j){
  67. if (s[i] == g[j])
  68. d[][i][j][] = d[][i][j][] = ;
  69. else
  70. d[][i][j][] = d[][i][j][] = inf;
  71. }
  72.  
  73. for (int i = ; i <= n; ++ i)
  74. for (int j = ; j < n; ++ j)
  75. for (int k = ; k < n; ++ k){
  76. d[i][j][k][] = d[i][j][k][] = inf;
  77. if (s[j] == g[k]){
  78. d[i][j][k][] = min(d[i][j][k][], d[i-][j+][k+][]);
  79. d[i][j][k][] = min(d[i][j][k][], d[i-][j+][k+][] + );
  80. }
  81. if (s[j+i-] == g[k+i-]){
  82. d[i][j][k][] = min(d[i][j][k][], d[i-][j][k][]);
  83. d[i][j][k][] = min(d[i][j][k][], d[i-][j][k][] + );
  84. }
  85. if (s[j] == g[k+i-]){
  86. d[i][j][k][] = min(d[i][j][k][], d[i-][j+][k][] + );
  87. d[i][j][k][] = min(d[i][j][k][], d[i-][j+][k][]);
  88. }
  89. if (s[j+i-] == g[k]){
  90. d[i][j][k][] = min(d[i][j][k][], d[i-][j][k+][] + );
  91. d[i][j][k][] = min(d[i][j][k][], d[i-][j][k+][]);
  92. }
  93. }
  94. return d[n][][][] == inf ? - : d[n][][][];
  95. }
  96.  
  97. // BEGIN CUT HERE
  98. public:
  99. void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0(); if ((Case == -) || (Case == )) test_case_1(); if ((Case == -) || (Case == )) test_case_2(); if ((Case == -) || (Case == )) test_case_3(); if ((Case == -) || (Case == )) test_case_4(); }
  100. private:
  101. template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
  102. void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
  103. void test_case_0() { string Arg0 = ""; string Arg1 = ""; int Arg2 = ; verify_case(, Arg2, minReversal(Arg0, Arg1)); }
  104. void test_case_1() { string Arg0 = ""; string Arg1 = ""; int Arg2 = ; verify_case(, Arg2, minReversal(Arg0, Arg1)); }
  105. void test_case_2() { string Arg0 = ""; string Arg1 = ""; int Arg2 = -; verify_case(, Arg2, minReversal(Arg0, Arg1)); }
  106. void test_case_3() { string Arg0 = ""; string Arg1 = ""; int Arg2 = ; verify_case(, Arg2, minReversal(Arg0, Arg1)); }
  107. void test_case_4() { string Arg0 = ""; string Arg1 = ""; int Arg2 = ; verify_case(, Arg2, minReversal(Arg0, Arg1)); }
  108.  
  109. // END CUT HERE
  110.  
  111. };
  112.  
  113. // BEGIN CUT HERE
  114. int main()
  115. {
  116. // freopen( "a.out" , "w" , stdout );
  117. ReversalChain ___test;
  118. ___test.run_test(-);
  119. return ;
  120. }
  121. // END CUT HERE

SRM 400(1-250pt, 1-500pt)的更多相关文章

  1. topcoder srm 400 div1

    problem1 link 枚举指数,然后判断是不是素数即可. problem2 link 令$f[len][a][b][r]$(r=0或者1)表示子串$init[a,a+len-1]$匹配$goal ...

  2. SRM475 - SRM479(1-250pt,500pt)

    SRM 475 DIV1 300pt 题意:玩游戏.给一个棋盘,它有1×n(1行n列,每列标号分别为0,1,2..n-1)的格子,每个格子里面可以放一个棋子,并且给定一个只含三个字母WBR,长度为n的 ...

  3. SRM468 - SRM469(1-250pt, 500pt)

    SRM 468 DIV1 250pt 题意:给出字典,按照一定要求进行查找. 解法:模拟题,暴力即可. tag:water score: 0.... 这是第一次AC的代码: /* * Author: ...

  4. SRM470 - SRM474(1-250pt,500pt)(471-500pt为最短路,474-500pt未做)

    SRM 470 DIV1 250pt 题意:有n个房间排成一排,相邻两个房间之间有一扇关闭着的门(共n-1扇),每个门上都标有‘A’-‘P’的大写字母.给定一个数n,表示第n个房间.有两个人John和 ...

  5. SRM593(1-250pt,500pt)

    SRM 593 DIV1 250pt 题意:有如下图所示的平面,每个六边形有坐标.将其中一些六边形染色,要求有边相邻的两个六边形不能染同一种颜色.给定哪些六边形需要染色,问最少需要多少种颜色. 解法: ...

  6. topcoder srm 553

    div1 250pt: 题意:... 解法:先假设空出来的位置是0,然后模拟一次看看是不是满足,如果不行的话,我们只需要关心最后栈顶的元素取值是不是受空白处的影响,于是还是模拟一下. // BEGIN ...

  7. topcoder srm 552

    div1 250pt: 题意:用RGB三种颜色的球摆N层的三角形,要求相邻的不同色,给出RGB的数量,问最多能摆几个 解法:三种颜色的数量要么是全一样,要么是两个一样,另外一个比他们多一个,于是可以分 ...

  8. topcoder srm 551

    div1 250pt 题意:一个长度最多50的字符串,每次操作可以交换相邻的两个字符,问,经过最多MaxSwaps次交换之后,最多能让多少个相同的字符连起来 解法:对于每种字符,枚举一个“集结点”,让 ...

  9. topcoder srm 550

    div1 250pt: 题意:有个机器人,从某一点出发,他只有碰到地形边缘或者碰到走过的点时才会改变运动方向,然后接着走,现在给出他的运动轨迹,判断他的运动是否合法,如果合法的话,那么整个地形的最小面 ...

随机推荐

  1. Android屏幕图标尺寸规范

    http://blog.csdn.net/dyllove98/article/details/9174229 . 程序启动图标:ldpi (120 dpi)小屏mdpi (160 dpi)中屏hdpi ...

  2. jQuery实现页面元素智能定位

    实现过程 Js侦听滚动事件,当页面滚动的距离(页面滚动的高度)超出了对象(要滚动的层)距离页面顶部的高度,即要滚动的层到达了浏览器窗口上边缘时,立即将对象定位属性position值改成fixed(固定 ...

  3. 浅析angular框架的cookie

    相信接触过网页编程的基本上都知道cookie这个东西吧,一个毫不起眼,但是又十分的重要的东西,今天我们就来分析一下这个小东西,我们都知道客服端通过发送http请求到服务器请求我们的数据,当我们的服务器 ...

  4. PHPCMS V9 学习总结(转)

    转自:http://www.cnblogs.com/Braveliu/p/5074930.html 在实现PHPCMS网站过程中,根据业务需求,我们遇到很多问题,特此总结如下,以便大家参考学习. [1 ...

  5. ios开发之IBOutlet和IBAction的区别

    IBOutlet 输出口是使用关键字IBOutlet声明的实例变量.控制器头文件中的输出口声明应如下所示: @property (nonatomic, retain) IBOutlet UIButto ...

  6. C# winform 右下角弹窗

    [DllImport("user32")] private static extern bool AnimateWindow(IntPtr hwnd, int dwTime, in ...

  7. dedecms织梦导航栏二级菜单的实现方法

    dede导航下拉菜单,一级栏目增加二级下拉菜单   使用dedecms5.6——5.7 将这段代码贴到templets\default\head.htm文件里<!-- //二级子类下拉菜单,考虑 ...

  8. Jquery 简单的Tab选项卡特效

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. Java初试

    另外在Java语言的代码内部书写文件路径时,需要注意大小写,大小写需要保持一致,路径中的文件夹名称区分大小写.由于’\’是Java语言中的特殊字符,所以在代码内部书写文件路径时,例如代表“c:\tes ...

  10. 一个CS出身的基本素养

    从前天10号提交Paper之后,连三个晚上之后突然正常起来竟然变成倒时差状态. 这周打算给自己一个空窗期,好好想想下两到三个月要做的事. 好吧,除了"一日一算法",当下两个月还有一 ...