玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 8218  Solved: 3233
[Submit]

Description

P
教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维
容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。
同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度
将为 x=j-i+Sigma(Ck) i<=K<=j
制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作
出任意长度的容器,甚至超过L。但他希望费用最小.

Input

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1
  这题直接推公式,使用斜率优化。
  注意要开long long。
  

 #include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=;
long long s[maxn],f[maxn];
int st,ed,q[maxn];
int main()
{
int n,L;
scanf("%d%d",&n,&L);
for(int i=;i<=n;i++)
scanf("%lld",&s[i]); for(int i=;i<=n;i++)
s[i]+=s[i-]; for(int i=;i<=n;i++)
s[i]+=i; q[st=]=;ed=;
for(int i=;i<=n;i++){
long long m=s[i]-L-;
while(st<ed-&&f[q[st+]]-f[q[st]]+s[q[st+]]*s[q[st+]]-s[q[st]]*s[q[st]]<=*m*(s[q[st+]]-s[q[st]]))st++;
f[i]=f[q[st]]+(m-s[q[st]])*(m-s[q[st]]);
while(st<ed-&&(f[i]-f[q[ed-]]+s[i]*s[i]-s[q[ed-]]*s[q[ed-]])*(s[q[ed-]]-s[q[ed-]])<=(f[q[ed-]]-f[q[ed-]]+s[q[ed-]]*s[q[ed-]]-s[q[ed-]]*s[q[ed-]])*(s[i]-s[q[ed-]]))ed--;
q[ed++]=i;
}
printf("%lld\n",f[n]);
}

动态规划(斜率优化):BZOJ 1010 【HNOI2008】 玩具装箱的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  4. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  5. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

  6. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  7. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

  8. BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...

  9. BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)

    题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...

  10. 【斜率优化】BZOJ1010 [HNOI2008]玩具装箱toy

    [题目大意] P教授有编号为1...N的N件玩具,第i件玩具长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.如果将第i件玩具到第j个玩具放到一 个容器中,那么容器的长度将为 x ...

随机推荐

  1. Rouh set 入门知识3(上下近似集,正负域,边界域)

    在RS中,引入两个概念:一个是下近似集,另一个是上近似集.下近似集是指当一个集合不能利用有效的等价关系被恰当的分类是时,则可通过另外的集合来达到这个集合的近似.形式上,设X⊆U是任一子集,R是U上的等 ...

  2. CSS Hack (各个浏览器兼容的问题)

    写css样式的时候,恐怕最头疼的就是各个浏览器下的兼容性问题,即css hack,明明感觉应该是对的,但是就是出不来效果,我根据平时所接触的,总结一下关于兼容 性的技巧,希望可以对大家有所帮助…… C ...

  3. HTML5 FileReader读取Blob对象API详解

    使用FileReader对象,web应用程序可以异步的读取存储在用户计算机上的文件(或者原始数据缓冲)内容,可以使用File对象或者Blob对象来指定所要读取的文件或数据.其中File对象可以是来自用 ...

  4. Android 安全性和权限

    自定义权限 permission <permission android:name="com.android.launcher.permission.INSTALL_SHORTCUT& ...

  5. 在treeview外加一个滚动条的实现

    前台代码: <div style="overflow:auto;width:190px;height:280px;border:1px solid #336699;padding-le ...

  6. awr相关指标解析

    awr相关指标解析 2016年11月11日 15:09

  7. OC - 30.如何封装自定义布局

    概述 对于经常使用的控件或类,通常将其分装为一个单独的类来供外界使用,以此达到事半功倍的效果 由于分装的类不依赖于其他的类,所以若要使用该类,可直接将该类拖进项目文件即可 在进行分装的时候,通常需要用 ...

  8. linux防火墙解封某端口

    首先,使用netstat –tunlp查看是否23端口被防火墙封掉了: 再使用iptables修改设置, # iptables -I INPUT -p tcp --dport 23 –jACCEPT ...

  9. EasyUI 1.3之前DataGrid中动态选中、获取Checkbox

    这几天做项目,由于项目中用到的EasyUI版本过低,不能使用自带操作DataGrid中CheckBox的方法. 所以自己写了一个临时方案: 根据ID集合选中所属行的CheckBox: data={1, ...

  10. Crystal Report制作使用

    Crystal Report制作使用 本文主要划分为以下六部分: 一.Crystal Report for .NET 的功能 二.Crystal Report总体结构 三.报表数据访问执行模式 四.报 ...