原文: http://liyiwen.iteye.com/blog/705489

之前 comp.graphic.algorithms 上有一个讨论,是关于怎么样使用曲线对多边形进行插值处理,使得最终产生的曲线是光滑的而且能通过所有的顶点。Gernot Hoffmann 建议说使用著名的 B-Spline 来进行插值。这里有他当时的文章。B-Spline 在这里效果很好,它看起来就像是一个固定在多边形顶点上的橡皮尺(elastic ruler)。

  


但我有个大胆的推测,我觉得肯定还存在更简单的方法。比如,使用三次贝塞曲线(cubic Bezier)进行近似。贝塞尔曲线有两个固定点(起点和终点),另加两个决定曲线形状的控制点(CP)。关于贝塞尔曲线的更多知识可以在搜索引擎中找到,比如,你可以参考 Paul Bourke 的站点。 现在给贝塞尔曲线的锚点(固定点),也就是多边形的某一对顶点,那么问题是,我们怎么计算控制点的位置?我运行 Xara X 然后画出了右边这个图形,这很简单,所以我决定尝试下计算出它们的坐标。很显然,多边形两条相邻边的两个控制点与这两个控制点之间的顶点应该在一条直线 上,只有这样,两条相邻的插值曲线才能平滑地连接在一起。所以,这两个控制点应该是相对于顶点是对称的,不过,也不全是……,因为真正的对称就要求它们与 中心点的距离应该是相等的,但对于我们的情况中并不完全是这样的。一开始,我试着先算出多边形两条边的角平分线,然后把控制点放在这条角平分线的垂直线 上。但从图上可以看到,控制点的连线并不会总是垂直于角平分线的。


最终,我找到一个非常简单的办法,不需要任何复杂的数学计算。首先,我们计算出多边形所有边线的中点,Ai。


然后连接起相邻边中点,得到很多线段,记为 Ci 。并用图记的方法计算出 Bi 点。


最后一步,只需要简单地将 Ci 进行平移,平移的路径就是每条线段上 Bi 到对应顶点的路径。就这样,我们计算出了贝塞尔曲线的控制点,平滑的结果看起来也很棒。


这里还可以做一点小小的改进,因为我们已经得到了一条决定控制点的直线,所以,我们可以根据需要,使控制点在这条直线上移动,这样可以改变插值曲线 的状态。我使用了一个与控制点和顶点初始距离相关的系数 K ,用来沿直线移动控制点。控制点离顶点越远,图形看起来就越锐利。


下面是用原始形状和系统K=1.0的贝塞尔插值两种方法来描画的 SVG 的狮子。

 


下面是放大图

 


这个方法对于自相关的多边形也适用,下面的例子可以看到,结果非常有意思:




这个方法只是探索和经验式的,如果从严格的数学模型的角度看它可能是错误的。但在实际使用中的效果已经足够好了,而 且这个方法只需要最小的计算量。下面的代码就是用来画出上面狮子图像的。这些代码并没有进行优化,只是用来演示的。里面有些变量计算了两次,在实际程序 中,如果连续的步骤中都用到同一个变量值,我们可以先缓存变量值进行复用(以避免重复的计算)。

// Assume we need to calculate the control
// points between (x1,y1) and (x2,y2).
// Then x0,y0 - the previous vertex,
// x3,y3 - the next one.
double xc1 = (x0 + x1) / 2.0;
double yc1 = (y0 + y1) / 2.0;
double xc2 = (x1 + x2) / 2.0;
double yc2 = (y1 + y2) / 2.0;
double xc3 = (x2 + x3) / 2.0;
double yc3 = (y2 + y3) / 2.0;
double len1 = sqrt((x1-x0) * (x1-x0) + (y1-y0) * (y1-y0));
double len2 = sqrt((x2-x1) * (x2-x1) + (y2-y1) * (y2-y1));
double len3 = sqrt((x3-x2) * (x3-x2) + (y3-y2) * (y3-y2));
double k1 = len1 / (len1 + len2);
double k2 = len2 / (len2 + len3);
double xm1 = xc1 + (xc2 - xc1) * k1;
double ym1 = yc1 + (yc2 - yc1) * k1;
double xm2 = xc2 + (xc3 - xc2) * k2;
double ym2 = yc2 + (yc3 - yc2) * k2;
// Resulting control points. Here smooth_value is mentioned
// above coefficient K whose value should be in range [0...1].
ctrl1_x = xm1 + (xc2 - xm1) * smooth_value + x1 - xm1;
ctrl1_y = ym1 + (yc2 - ym1) * smooth_value + y1 - ym1;
ctrl2_x = xm2 + (xc2 - xm2) * smooth_value + x2 - xm2;
ctrl2_y = ym2 + (yc2 - ym2) * smooth_value + y2 - ym2;

使用三次贝塞尔近似的代码:

// Number of intermediate points between two source ones,
// Actually, this value should be calculated in some way,
// Obviously, depending on the real length of the curve.
// But I don't know any elegant and fast solution for this
// problem.
#define NUM_STEPS 20
void curve4(Polygon* p,
double x1, double y1, //Anchor1
double x2, double y2, //Control1
double x3, double y3, //Control2
double x4, double y4) //Anchor2
{
double dx1 = x2 - x1;
double dy1 = y2 - y1;
double dx2 = x3 - x2;
double dy2 = y3 - y2;
double dx3 = x4 - x3;
double dy3 = y4 - y3;
double subdiv_step = 1.0 / (NUM_STEPS + 1);
double subdiv_step2 = subdiv_step*subdiv_step;
double subdiv_step3 = subdiv_step*subdiv_step*subdiv_step;
double pre1 = 3.0 * subdiv_step;
double pre2 = 3.0 * subdiv_step2;
double pre4 = 6.0 * subdiv_step2;
double pre5 = 6.0 * subdiv_step3; double tmp1x = x1 - x2 * 2.0 + x3;
double tmp1y = y1 - y2 * 2.0 + y3;
double tmp2x = (x2 - x3)*3.0 - x1 + x4;
double tmp2y = (y2 - y3)*3.0 - y1 + y4;
double fx = x1;
double fy = y1;
double dfx = (x2 - x1)*pre1 + tmp1x*pre2 + tmp2x*subdiv_step3;
double dfy = (y2 - y1)*pre1 + tmp1y*pre2 + tmp2y*subdiv_step3;
double ddfx = tmp1x*pre4 + tmp2x*pre5;
double ddfy = tmp1y*pre4 + tmp2y*pre5;
double dddfx = tmp2x*pre5;
double dddfy = tmp2y*pre5;
int step = NUM_STEPS;
// Suppose, we have some abstract object Polygon which
// has method AddVertex(x, y), similar to LineTo in
// many graphical APIs.
// Note, that the loop has only operation add!
while(step--)
{
fx += dfx;
fy += dfy;
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
p->AddVertex(fx, fy);
}
p->AddVertex(x4, y4); // Last step must go exactly to x4, y4
}

你可以下载一个能运行的画狮子的例子,对它进行旋转和缩放,也可以生成一些随机的多边形。点左键并拖动它可以围绕中 心点旋转和缩放图像。点右键并从左向右拖动,可以改变系统数K。 K=1时大约是距窗口左边100像素处。每次双击会产生一个随机的多边形,对于这些多边形,也可以进行旋转、缩放以及改变K值的操作。

AGG 之贝塞尔插值的更多相关文章

  1. css3中变形与动画(二)

    css3制作动画的几个属性:变形(transform),过渡(transition)和动画(animation). transform介绍过了.接下来介绍过渡transition. 一.例子 先通过一 ...

  2. SVG 2D入门11 - 动画

    交互性      SVG拥有良好的用户交互性,例如:1. SVG能响应大部分的DOM2事件.2. SVG能通过cursor良好的捕捉用户鼠标的移动.3. 用户可以很方便的通过设置svg元素的zoomA ...

  3. svg transform

    看了这个页面的说明:http://www.2cto.com/kf/201301/186980.html 总结如下:transform包括:translate(tx,ty),scale(sx,sy),r ...

  4. css图像处理与动画

    先讨论几个css 问题 1,css 清除浮动的方法 2,css 居中 3,多行省略号 4,小布局技巧 2D 动画功能属性兼容性:transform.transition.animation trans ...

  5. http://blog.csdn.net/pizi0475/article/details/48286579 -------------(Collada 快速入门)

    http://blog.csdn.net/zhouhangjay/article/details/8469085 说明:Collada的文件格式,中文版的很少,在csdn上看到了一个Sleepy的,感 ...

  6. Unity3d游戏中自定义贝塞尔曲线编辑器[转]

    关于贝塞尔曲线曲线我们再前面的文章提到过<Unity 教程之-在Unity3d中使用贝塞尔曲线>,那么本篇文章我们来深入学习下,并自定义实现贝塞尔曲线编辑器,贝塞尔曲线是最基本的曲线,一般 ...

  7. NeHe OpenGL教程 第二十八课:贝塞尔曲面

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  8. (转)用AGG实现高质量图形输出(二)

    本文上接<用AGG实现高质量图形输出(一)>,分别介绍了AGG显示流程中的各个环节. 上次讲了AGG的显示原理并举了一个简单的例子,这一篇文章开始讲AGG工作流程里的每个环节.为了方便对照 ...

  9. 贝塞尔曲线:原理、自定义贝塞尔曲线View、使用!!!

    一.原理 转自:http://www.2cto.com/kf/201401/275838.html Android动画学习Demo(3) 沿着贝塞尔曲线移动的Property Animation Pr ...

随机推荐

  1. Linux命令:chmod命令

    chmod命令:改变文件或目录的存取权限 #权限代号 -r 文件被读取 4 -w 文件被写入 2 -x 文件被执行 1 #权限范围 -u 文件所有者 -g 文件所有者所在组 -o 其他 -a 全部 # ...

  2. Spring与Jdbc Demo

    方法一:继承JdbcTemplate来实现 1.配置applicationContext <!-- 获取数据源连接 dbcp --> <bean id="dataSourc ...

  3. 大规模字符串检索-压缩trie树

    本文使用压缩trie树实现字符串检索的功能.首先将字符串通过编码转化为二进制串,随后将二进制串插入到trie树中,在插入过程中同时实现压缩的功能. 字符编码采用Huffman,但最终测试发现不采用Hu ...

  4. Android JIN返回结构体

    一.对应类型符号 Java 类型     符号 boolean     Z byte     B char     C short     S int     I long     J float   ...

  5. Spring 整合Redis 出现 afterPropertiesSet signature: ()V) Incompatible argument to function 解决办法

    正在做SpringMVC+Redis整合的练习 使用的是 spring-data-redis 和 Jedis 配置好之后出现了以下错误: Caused by: java.lang.VerifyErro ...

  6. 如何使rdlc报表的表头在每一页都显示

    想要使表格的表头在每一行都显示,直接在表格的属性设置界面中设置是无效的,应该算是一个BUG,如图: 但还是可以实现的,实现方法如下,这个实现方法从网上得到 开发工具: Visual Studio 20 ...

  7. DDoS攻击

    来自百度百科 分布式拒绝服务攻击编辑 分布式拒绝服务攻击(英文:Distributed Denial of Service,缩写:DDoS)亦称洪水攻击.顾名思义,即是利用网络上已被攻陷的电脑作为“僵 ...

  8. IIC 概述之1

    概述: I²C 是Inter-Integrated Circuit的缩写,发音为"eye-squared cee" or "eye-two-cee" , 它是一 ...

  9. KVO初探

    一,概述 KVO,即:Key-Value Observing,它提供一种机制,当指定的对象的属性被修改后,则对象就会接受到通知.简单的说就是每次指定的被观察的对象的属性被修改后,KVO就会自动通知相应 ...

  10. find_cmd函数分析

    一.概述 1.函数位置 common/command.c 2.函数功能分析 解析命令的关键环节是如何根据输入命令查找对应命令的信息,从而跳转到对应命令的函数处执行程序.这必然涉及到如何存放命令的详细信 ...