3037: 创世纪

Time Limit: 5 Sec  Memory Limit: 128 MB
Submit: 123  Solved: 66
[Submit][Status]

Description

applepi手里有一本书《创世纪》,里面记录了这样一个故事……
上帝手中有着N 种被称作“世界元素”的东西,现在他要把它们中的一部分投放到一个新的空间中去以建造世界。每种世界元素都可以限制另外一种世界元素,所以说上帝希望所有被投放的世界元素都有至少一个没有被投放的世界元素能够限制它,这样上帝就可以保持对世界的控制。
由于那个著名的有关于上帝能不能制造一块连自己都不能举起的大石头的二律背反命题,我们知道上帝不是万能的,而且不但不是万能的,他甚至有事情需要找你帮忙——上帝希望知道他最多可以投放多少种世界元素,但是他只会O(2^N) 级别的算法。虽然上帝拥有无限多的时间,但是他也是个急性子。你需要帮助上帝解决这个问题。

Input

第一行是一个整数N,表示世界元素的数目。
第二行有 N 个整数A1, A2, …, AN。Ai 表示第i 个世界元素能够限制的世界元素的编号。

Output

一个整数,表示最多可以投放的世界元素的数目。

Sample Input

6
2 3 1 3 6 5

Sample Output

3

HINT

样例说明

选择2、3、5 三个世界元素即可。分别有1、4、6 来限制它们。

数据范围与约定

对于30% 的数据,N≤10。

对于60% 的数据, N≤10^5。

对于 100% 的数据,N≤10^6,1≤Ai≤N,Ai≠i。

Source

题解:
搬运题解:http://blog.csdn.net/popoqqq/article/details/39965603

题目大意:给定一张有向图,每个点有且仅有一条出边,要求若一个点x扔下去,至少存在一个保留的点y,y的出边指向x,求最多扔下去多少个点

首先原题的意思就是支配关系 我们反向考虑 求最少保留的点 要求一个点若扔出去 则必须存在一个保留的点指向它

于是这就是最小支配集 不过由于是有向图 所以一个点要么选择 要么被子节点支配 所以就只剩下2个状态了

设f[x]为以x为根的子树选择x的最小支配集 g[x]为不选择x的最小支配集

然后由于是基环树林 所以我们选择一个环上的点 拆掉它的出边 设这个点为x 出边指向的点为y 讨论

1.若x选择 则y一开始就是被支配状态 g[y]初值为0 求一遍最小支配集

2.若x不选 正常求最小支配集即可

两种情况取最小值计入ans 最后输出n-ans即可

然后说一下我关于这张图的形态的理解:

因为原本每个点只有一个出度,入度不定,然后n条边,就是一个 内向树 (直觉上。。。)(用词不专业,不知道对不对。。。)

然后我们存的时候是反过来存的 存每个点能够被哪几个点支配,这样就成了入度为1,出度不定了,就成了一个外向树

所以我们随便找到环上的一个点,然后就可以遍历到所有点。。。而我们找环的时候是顺着原来的边找的,因为这样在环的分叉上回到环。

而这个过程使得一些点没有被标记,所以在DP的时候还要加标记

一些注释写在代码里:

代码:

  1. #include<cstdio>
  2. #include<cstdlib>
  3. #include<cmath>
  4. #include<cstring>
  5. #include<algorithm>
  6. #include<iostream>
  7. #include<vector>
  8. #include<map>
  9. #include<set>
  10. #include<queue>
  11. #include<string>
  12. #define inf 1000000000
  13. #define maxn 1000000+100
  14. #define maxm 500+100
  15. #define eps 1e-10
  16. #define ll long long
  17. #define pa pair<int,int>
  18. #define for0(i,n) for(int i=0;i<=(n);i++)
  19. #define for1(i,n) for(int i=1;i<=(n);i++)
  20. #define for2(i,x,y) for(int i=(x);i<=(y);i++)
  21. #define for3(i,x,y) for(int i=(x);i>=(y);i--)
  22. #define mod 1000000007
  23. using namespace std;
  24. inline int read()
  25. {
  26. int x=,f=;char ch=getchar();
  27. while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
  28. while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
  29. return x*f;
  30. }
  31. int n,rt,ban,ans,a[maxn],fa[maxn],head[maxn],f[maxn],g[maxn];
  32. bool v[maxn];
  33. struct edge{int go,next;}e[maxn];
  34. inline void dfs(int x)
  35. {
  36. v[x]=;
  37. if(v[a[x]])rt=x;else dfs(a[x]);
  38. }
  39. inline void dp(int x)
  40. {
  41. f[x]=;g[x]=inf;v[x]=;
  42. if(x==ban)g[x]=;
  43. for(int i=head[x];i;i=e[i].next)
  44. if(i!=rt&&e[i].go!=fa[x])
  45. {
  46. int y=e[i].go;
  47. fa[y]=x;
  48. dp(y);
  49. g[x]+=min(f[y],g[y]);
  50. g[x]=min(g[x],f[x]+f[y]-);//这里巧妙的避免了使用临时变量来存储f[y]与g[y]的最小差值
  51. f[x]+=min(f[y],g[y]);
  52. }
  53. }
  54. int main()
  55. {
  56. freopen("input.txt","r",stdin);
  57. freopen("output.txt","w",stdout);
  58. n=read();int x;
  59. for1(i,n)e[i].go=i,a[i]=x=read(),e[i].next=head[x],head[x]=i;
  60. for1(i,n)
  61. if(!v[i])
  62. {
  63. dfs(i);//找出这棵基环树
  64. ban=a[rt];//选取rt作为x,a[rt]作为y,g[y]=0
  65. dp(rt);
  66. int tmp=f[rt];//限定rt必须选
  67. ban=;
  68. dp(rt);
  69. tmp=min(tmp,g[rt]);//不用选rt
  70. ans+=tmp;
  71. }
  72. printf("%d\n",n-ans);
  73. return ;
  74. }

Poetize4 创世纪的更多相关文章

  1. 为创世纪图书馆(Library Genesis)作镜像

    简介 Library Genesis的Wikipedia条目中的介绍是: Library Genesis or LibGen is a search engine for articles and b ...

  2. 编程哲学之C#篇:01——创世纪

    我们能否像神一样地创建一个世界? 对于创建世界而言,程序员的创作能力最接近于神--相对于导演,作家,漫画家而言,他们创建的世界(作品)一旦完成,就再也不会变化,创建的角色再也不会成长.而程序员创建的世 ...

  3. 【BZOJ3037/2068】创世纪/[Poi2004]SZP 树形DP

    [BZOJ3037]创世纪 Description applepi手里有一本书<创世纪>,里面记录了这样一个故事……上帝手中有着N 种被称作“世界元素”的东西,现在他要把它们中的一部分投放 ...

  4. [bzoj3037/2068]创世纪[Poi2004]SZP_树形dp_并查集_基环树

    创世纪 SZP bzoj-3037/2068 Poi-2004 题目大意:给你n个物品,每个物品可以且仅可以控制一个物品.问:选取一些物品,使得对于任意的一个被选取的物品来讲,都存在一个没有被选取的物 ...

  5. CH6401 创世纪

    6401 创世纪 0x60「图论」例题 描述 上帝手中有 N(N≤10^6) 种世界元素,每种元素可以限制另外1种元素,把第 i 种世界元素能够限制的那种世界元素记为 A[i].现在,上帝要把它们中的 ...

  6. 图形学创世纪——写在SIGGRAPH 40年的边上

    40年的边上" title="图形学创世纪--写在SIGGRAPH 40年的边上"> 前言: SIGGRAPH是由ACM SIGGRAPH(美国计算机协会计算机图形 ...

  7. JZOJ 3929. 【NOIP2014模拟11.6】创世纪

    3929. [NOIP2014模拟11.6]创世纪 (Standard IO) Time Limits: 1000 ms Memory Limits: 65536 KB Description 上帝手 ...

  8. T1创世纪(原创)

    创世纪 这是我的第一道原创题 题解: 这道题的核心算法是:加维度的最短路+贪心 状态:\(dis[i][j][t][a]\)表示在 \(t\) 时,到达 \((i,j)\) ,当前共造\(a\)只&q ...

  9. 「Poetize4」创世纪

    在tyvj上怀疑爆栈了.....或许一定是我写挂了.以后调吧... UPD:bzoj上过了... 题解:https://blog.csdn.net/popoqqq/article/details/39 ...

随机推荐

  1. For and While loop choice.

    /* Difference between 'for' and 'while'. We can transform everything between 'for' and 'while'. if t ...

  2. sql常用的日期函数与应用

    --本周第一天 ),getdate()) --or ,) --本周第一天 ,) --上月第一天 ),,,) --上月最后一天 ),,,)),)+' 23:59:59' --本月第一天 ,getdate ...

  3. Gprinter Android SDK V1.0 使用说明

    佳博打印机代理商淘宝店https://shop107172033.taobao.com/index.htm?spm=2013.1.w5002-9520741823.2.Sqz8Pf 在此店购买的打印机 ...

  4. Orace数据库锁表的处理与总结<摘抄与总结一>

    TM锁(表级锁)类型共有5种,分别称为共享锁(S锁).排它锁(X锁).行级共享锁(RS锁).行级排它锁(RX锁).共享行级排它锁(SRX锁) 当Oracle执行DML语句时,系统自动在所要操作的表上申 ...

  5. Vijos1352 NOI2006 最大获利 最小权闭合图

    Orz胡伯涛<最小割模型在信息学竞赛中的应用> 建图方法: 设立源点S和汇点T,S和用户(共M个)连边,载流量为满足其要求的获利 T和中转站(共N个)连边,载流量为建立该中转站的费用 每个 ...

  6. 给表格设置border还可以这样玩

    <table width="100%" border="0" cellpadding="0" cellspacing="1& ...

  7. C# winform 右下角弹窗

    [DllImport("user32")] private static extern bool AnimateWindow(IntPtr hwnd, int dwTime, in ...

  8. ng的数据绑定

    ng创建了一个自己的事件循环,当浏览器事件(常用的dom事件,xhr事件等)发生时,对DOM对应的数据进行检查,若更改了,则标记为脏值,并进入更新循环,修改对应的(可能是多个) DOM的参数.这样就实 ...

  9. JavaIO流——File类

    1.掌握File 类的作用 2.可以使用File 类中的方法对文件进行操作 所有的 io 操作都保存在 java.io 包中. 构造方法:public File (String pathname) 直 ...

  10. php基础知识【函数】(8)xml和变量函数

     一.XML函数 参数类型 data    --string,需要解析的数据集. parser  --resource,一个指向要取得字节索引的 XML 解析器的引用.  1.创建和释放XMl解析器 ...