【题目描述】

小C有一个集合S,里面的元素都是小于M的非负整数。他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S。

小C用这个生成器生成了许多这样的数列。但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个。小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi。另外,小C认为这个问题 的答案可能很大,因此他只需要你帮助他求出答案mod 1004535809的值就可以了。

【输入格式】

一行,四个整数,N、M、x、|S|,其中|S|为集合S中元素个数。

第二行,|S|个整数,表示集合S中的所有元素。

【输出格式】

一行,一个整数,表示你求出的权值和mod 1004535809的值。

【样例输入】

4 3 1 2

1 2

【样例输出】

8

【提示】

对于10%的数据,1<=N<=1000;

对于30%的数据,3<=M<=100;

对于60%的数据,3<=M<=800;

对于全部的数据,1<=N<=10^9,3<=M<=8000,M为质数,0<=x<=M-1,输入数据保证集合S中元素不重复。

  竟然没有x=0的数据。

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int N=,G=;
const int MOD=;
int g,n,m,x,s,pos[N],num[N];
int Qpow(int x,int k,int mod){
long long ret=;
while(k){
if(k&)ret=1ll*ret*x%mod;
x=1ll*x*x%mod;k>>=;
}
return ret;
} void Rader(int *a,int len){
for(int i=,j=len>>;i<len-;i++){
if(i<j)swap(a[i],a[j]);
int k=len>>;
while(j>=k){
j-=k;
k>>=;
}
j+=k;
}
} void NTT(int *a,int len,int on){
Rader(a,len);
for(int h=,wn;h<=len;h<<=){
if(on==)wn=Qpow(G,(MOD-)/h,MOD);
else wn=Qpow(G,MOD--(MOD-)/h,MOD);
for(int j=;j<len;j+=h){
int w=,x,y;
for(int k=j;k<j+(h>>);k++){
x=a[k];y=1ll*a[k+(h>>)]*w%MOD;
a[k]=(x+y)%MOD;a[k+(h>>)]=(x-y+MOD)%MOD;
w=1ll*w*wn%MOD;
}
}
}
if(on==-){
int inv=Qpow(len,MOD-,MOD);
for(int i=;i<len;i++)
a[i]=1ll*a[i]*inv%MOD;
}
} int f[N],r[N],l=N/;
void Solve(){
for(int i=;i<N;i++)
r[i]=f[i];n-=;
while(n){
NTT(f,N,);
if(n&){
NTT(r,N,);
for(int i=;i<N;i++)r[i]=1ll*r[i]*f[i]%MOD;
NTT(r,N,-);
for(int i=m-;i<N;i++)(r[i%(m-)]+=r[i])%=MOD,r[i]=;
}
for(int i=;i<N;i++)f[i]=1ll*f[i]*f[i]%MOD;
NTT(f,N,-);
for(int i=m-;i<N;i++)(f[i%(m-)]+=f[i])%=MOD,f[i]=;
n>>=;
}
printf("%d\n",r[pos[x]]);
} void Solve_Zero(){int cnt=,ans;
for(int i=;i<=s;i++)if(!num[i])cnt++;
ans=Qpow(s,n,MOD)-Qpow(s-cnt,n,MOD);
printf("%d\n",ans);
}
int main(){
freopen("sdoi2015_sequence.in","r",stdin);
freopen("sdoi2015_sequence.out","w",stdout);
scanf("%d%d%d%d",&n,&m,&x,&s);
for(int i=;i<=s;i++)
scanf("%d",&num[i]);
if(!x)Solve_Zero();
for(g=;g<m;g++){int i;
for(i=;i<m-;i++)
if(Qpow(g,i,m)==)
break;
if(i==m-&&Qpow(g,m-,m)==)break;
}
for(int i=;i<m;i++)
pos[Qpow(g,i,m)]=i%(m-);
for(int i=;i<=s;i++)
if(num[i])f[pos[num[i]]]++;
Solve();
return ;
}

数学(快速数论变换):SDOI2015 序列统计的更多相关文章

  1. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  2. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  3. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  4. BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)

    3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...

  5. 【算法】快速数论变换(NTT)初探

    [简介] 快速傅里叶变换(FFT)运用了单位复根的性质减少了运算,但是每个复数系数的实部和虚部是一个余弦和正弦函数,因此系数都是浮点数,而浮点数的运算速度较慢且可能产生误差等精度问题,因此提出了以数论 ...

  6. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  7. [SDOI2015]序列统计

    [SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...

  8. 3992: [SDOI2015]序列统计

    3992: [SDOI2015]序列统计 链接 分析: 给定一个集和s,求多少个长度为n的序列,满足序列中每个数都属于s,并且所有数的乘积模m等于x. 设$f=\sum\limits_{i=0}^{n ...

  9. [SDOI2015]序列统计(NTT+求原根)

    题目 [SDOI2015]序列统计 挺好的题!!! 做法 \(f[i][j]\)为第\(i\)个数前缀积在模\(M\)意义下为\(j\) 显然是可以快速幂的:\[f[2*i][j]=\sum\limi ...

  10. 【题解】SDOI2015序列统计

    [题解]SDOI2015序列统计 来自永不AFO的YYB的推荐 这里是乘积,比较麻烦,不过由于给定的序列膜数是个小质数,所以可以\(O(m^2\log m)\)找原跟(实际上不需要这么多). 乘积有点 ...

随机推荐

  1. ubuntu下的openfire安装、配置、运行

    openfire服务器              Openfire 采用Java开发,开源的实时协作(RTC)服务器基于XMPP(Jabber)协议.您可以使用它轻易的构建高效率的即时通信服务器.Op ...

  2. oracle重建、更新索引、索引统计信息命令

    在oracle中查找所有的表的索引的命令 select t.*,i.index_type from user_ind_columns t,user_indexes i where t.index_na ...

  3. VS 创建 使用C++ 静态类库(Dll)

    创建静态类库 Walkthrough: Creating and Using a Dynamic Link Library (C++) 1:菜单栏-->File, New, Project. 2 ...

  4. ViewPager + Fragment 实现类微信界面

    在如今的互联网时代,微信已是一个超级App.这篇通过ViewPager + Fragment实现一个类似于微信的界面,之前有用FragmentTabHost实现过类似界面,ViewPager的实现方式 ...

  5. get 和 post的使用.

    Two commonly used methods for a request-response between a client and server are: GET and POST. GET  ...

  6. 在java中使用 File.renameTo(File)实现重命名.

    Here is part of my files: [北京圣思园Java培训教学视频]Java.SE.前9日学习成果测试题(2010年12月2日).rar [北京圣思园Java培训教学视频]Java. ...

  7. ios进行打包

    原文转载:http://blog.csdn.net/azhou_hui/article/details/9058677   公司刚搞了个299美刀的仅提供真机测试的企业账号,这个不需要添加设备ID,而 ...

  8. 类和ID选择器的区别

    学习了类选择器和ID选择器,我们会发现他们之间有很多的相似处,是不是两者可以通用呢?我们不要着急先来总结一下他们的相同点和不同点: 相同点:可以应用于任何元素不同点: 1.ID选择器只能在文档中使用一 ...

  9. 一条sql语句循环插入N条不同记录(转)

    SET NOCOUNT ON IF (OBJECT_ID('TB' ) IS NOT NULL ) DROP TABLE TB GO CREATE TABLE TB(ID INT IDENTITY ( ...

  10. SpringMVC4+thymeleaf3的一个简单实例(篇二:springMVC与thymeleaf的整合)

    延续前篇内容. 开始之前,我们首先要准备以下12个jar文件:spring-aop-4.3.3.RELEASE.jarspring-beans-4.3.3.RELEASE.jarspring-cont ...