题意:

给定两个字符串 A 和 B,求最长公共子串。

分析:

字符串的任何一个子串都是这个字符串的某个后缀的前缀。

求 A 和 B 的最长公共子串等价于求 A 的后缀和 B 的后缀的最长公共前缀的最大值。如果枚举 A和 B 的所有的后缀,那么这样做显然效率低下。

由于要计算 A 的后缀和 B 的后缀的最长公共前缀,所以先将第二个字符串写在第一个字符串后面,中间用一个没有出现过的字符隔开,再求这个新的字符串的后缀数组。

观察一下,看看能不能从这个新的字符串的后缀数组中找到一些规律。以 A=“aaaba”,B=“abaa”为

那么是不是所有的 height 值中的最大值就是答案呢?不一定!有可能这两个 后 缀 是 在 同 一 个 字 符 串 中 的 , 所 以 实 际 上 只 有 当 suffix(sa[i-1]) 和suffix(sa[i])不是同一个字符串中的两个后缀时,height[i]才是满足条件的。

而这其中的最大值就是答案。

// File Name: 2774.cpp
// Author: Zlbing
// Created Time: 2013年09月07日 星期六 14时55分24秒 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
using namespace std;
#define CL(x,v); memset(x,v,sizeof(x));
#define INF 0x3f3f3f3f
#define LL long long
#define REP(i,r,n) for(int i=r;i<=n;i++)
#define RREP(i,n,r) for(int i=n;i>=r;i--)
//rank从0开始
//sa从1开始,因为最后一个字符(最小的)排在第0位
//height从2开始,因为表示的是sa[i-1]和sa[i]
const int MAXN=;
int rank[MAXN],sa[MAXN],X[MAXN],Y[MAXN],height[MAXN];
char s[MAXN];
int buc[MAXN];
void calheight(int n) {
int i , j , k = ;
for(i = ; i <= n ; i++) rank[sa[i]] = i;
for(i = ; i < n ; height[rank[i++]] = k)
for(k?k--: , j = sa[rank[i]-] ; s[i+k] == s[j+k] ; k++);
}
bool cmp(int *r,int a,int b,int l) {
return (r[a] == r[b] && r[a+l] == r[b+l]);
}
void suffix(int n,int m = ) {
int i , l , p , *x = X , *y = Y;
for(i = ; i < m ; i ++) buc[i] = ;
for(i = ; i < n ; i ++) buc[ x[i] = s[i] ] ++;
for(i = ; i < m ; i ++) buc[i] += buc[i-];
for(i = n - ; i >= ; i --) sa[ --buc[ x[i] ]] = i;
for(l = ,p = ; p < n ; m = p , l *= ) {
p = ;
for(i = n-l ; i < n ; i ++) y[p++] = i;
for(i = ; i < n ; i ++) if(sa[i] >= l) y[p++] = sa[i] - l;
for(i = ; i < m ; i ++) buc[i] = ;
for(i = ; i < n ; i ++) buc[ x[y[i]] ] ++;
for(i = ; i < m ; i ++) buc[i] += buc[i-];
for(i = n - ; i >= ; i --) sa[ --buc[ x[y[i]] ] ] = y[i];
for(swap(x,y) , x[sa[]] = , i = , p = ; i < n ; i ++)
x[ sa[i] ] = cmp(y,sa[i-],sa[i],l) ? p- : p++;
}
calheight(n-);//后缀数组关键是求出height,所以求sa的时候顺便把rank和height求出来
}
//当需要反复询问两个后缀的最长公共前缀时用到RMAXNQ
int Log[MAXN];
int best[][MAXN];
void initRMQ(int n) {//初始化RMQ
for(int i = ; i <= n ; i ++) best[][i] = height[i];
for(int i = ; i <= Log[n] ; i ++) {
int limit = n - (<<i) + ;
for(int j = ; j <= limit ; j ++) {
best[i][j] = min(best[i-][j] , best[i-][j+(<<i>>)]);
}
}
}
int lcp(int a,int b) {//询问a,b后缀的最长公共前缀
a = rank[a]; b = rank[b];
if(a > b) swap(a,b);
a ++;
int t = Log[b - a + ];
return min(best[t][a] , best[t][b - (<<t) + ]);
}
int main() {
//预处理每个数字的Log值,常数优化,用于RMQ
Log[] = -;
for(int i = ; i < MAXN ; i ++) {
Log[i] = (i&(i-)) ? Log[i-] : Log[i-] + ;
}
//*******************************************
// n为数组长度,下标0开始
// 将初始数据,保存在s里,并且保证每个数字都比0大
// m = max{ s[i] } + 1
// 一般情况下大多是字符操作,所以128足够了
//*******************************************
char ch[MAXN];
while(~scanf("%s",s))
{
scanf("%s",ch);
int len1=strlen(s);
int len2=strlen(ch);
s[len1]=;
for(int i=len1+;i<len1+len2+;i++)
s[i]=ch[i-len1-];
int n=len1+len2+;
s[n]=;
suffix(n);
initRMQ(n);
int ans=;
for(int i=;i<=n;i++)
{
if((sa[i-]<len1&&sa[i]>len1)||(sa[i-]>len1&&sa[i]<len1))
{
ans=max(ans,height[i]);
}
}
printf("%d\n",ans);
} return ;
}


POJ-2774-Long Long Message(后缀数组-最长公共子串)的更多相关文章

  1. POJ 2774 Long Long Message 后缀数组

    Long Long Message   Description The little cat is majoring in physics in the capital of Byterland. A ...

  2. POJ 2774 Long Long Message 后缀数组模板题

    题意 给定字符串A.B,求其最长公共子串 后缀数组模板题,求出height数组,判断sa[i]与sa[i-1]是否分属字符串A.B,统计答案即可. #include <cstdio> #i ...

  3. POJ 2774 Long Long Message (后缀数组+二分)

    题目大意:求两个字符串的最长公共子串长度 把两个串接在一起,中间放一个#,然后求出height 接下来还是老套路,二分出一个答案ans,然后去验证,如果有连续几个位置的h[i]>=ans,且存在 ...

  4. POJ 2217 (后缀数组+最长公共子串)

    题目链接: http://poj.org/problem?id=2217 题目大意: 求两个串的最长公共子串,注意子串是连续的,而子序列可以不连续. 解题思路: 后缀数组解法是这类问题的模板解法. 对 ...

  5. poj 2774 Long Long Message 后缀数组基础题

    Time Limit: 4000MS   Memory Limit: 131072K Total Submissions: 24756   Accepted: 10130 Case Time Limi ...

  6. poj 2774 Long Long Message 后缀数组LCP理解

    题目链接 题意:给两个长度不超过1e5的字符串,问两个字符串的连续公共子串最大长度为多少? 思路:两个字符串连接之后直接后缀数组+LCP,在height中找出max同时满足一左一右即可: #inclu ...

  7. POJ - 2774 Long Long Message (后缀数组/后缀自动机模板题)

    后缀数组: #include<cstdio> #include<algorithm> #include<cstring> #include<vector> ...

  8. POJ 2774 Long Long Message ——后缀数组

    [题目分析] 用height数组RMQ的性质去求最长的公共子串. 要求sa[i]和sa[i-1]必须在两个串中,然后取height的MAX. 利用中间的字符来连接两个字符串的思想很巧妙,记得最后还需要 ...

  9. [poj 2274]后缀数组+最长公共子串

    题目链接:http://poj.org/problem?id=2774 后缀数组真的太强大了,原本dp是O(nm)的复杂度,在这里只需要O(n+m). 做法:将两个串中间夹一个未出现过的字符接起来,然 ...

随机推荐

  1. 关于C++的疑问剖析

    1)众所周知,抽象类是不存在对象的,只提供接口而不提供实现.但是抽象类能不能作为一个类指针,指向其子类的对象呢? class Interface { public: ; }; class Implem ...

  2. 禁止鼠标多次点击选中div中的文字

    <!DOCTYPE html><html><head><meta charset="utf-8"><title>Fire ...

  3. CentOS 6.4 编译 Hadoop 2.5.1

    为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/SJQ. http://www.cnblogs.com/shijiaqi1066/p/4058956.html ...

  4. JS实现一键复制功能

    var copyClick = function (d) { var Url2 = $(d).parent().parent().find("#copy_value"); Url2 ...

  5. html multiple select option 分组

    普通html方式展示<select name="viewType" style="width: 100%;height: 300px;" multiple ...

  6. Scrum教练不应兼任product owner

    ScrumMasters Should Not Also Be Product Owners(中文翻译) December 2, 2014 by Mike Cohn 翻译:2015.2.18 by o ...

  7. IOS学习--UIButton常用方法(20150122)

    // 1.创建一个自定义的按钮 UIButton *btn = [UIButton buttonWithType:UIButtonTypeCustom]; // 2.添加按钮 [self.view a ...

  8. 最简单的基于FFmpeg的移动端例子:IOS 推流器

    转至:http://blog.csdn.net/leixiaohua1020/article/details/47072519   ================================== ...

  9. javascript基础学习(四)

    javascript之流程控制语句 学习要点: 表达式语句含义 选择语句:if.if...else.switch 循环语句:while.do...while.for.for...in 跳转语句:bre ...

  10. 226. Invert Binary Tree(C++)

    226. Invert Binary Tree Invert a binary tree. 4 / \ 2 7 / \ / \ 1 3 6 9 to 4 / \ 7 2 / \ / \ 9 6 3 1 ...