Beijing Guards

Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the Imperial City Wall, the Inner City Wall, and finally the Outer City Wall. Most of these walls were demolished in the 50s and 60s to make way for roads. The walls were protected by guard towers, and there was a guard living in each tower. The wall can be considered to be a large ring, where every guard tower has exaetly two neighbors.

The guard had to keep an eye on his section of the wall all day, so he had to stay in the tower. This is a very boring job, thus it is important to keep the guards motivated. The best way to motivate a guard is to give him lots of awards. There are several different types of awards that can be given: the Distinguished Service Award, the Nicest Uniform Award, the Master Guard Award, the Superior Eyesight Award, etc. The Central Department of City Guards determined how many awards have to be given to each of the guards. An award can be given to more than one guard. However, you have to pay attention to one thing: you should not give the same award to two neighbors, since a guard cannot be proud of his award if his neighbor already has this award. The task is to write a program that determines how many different types of awards are required to keep all the guards motivated.

Input

The input contains several blocks of test eases. Each case begins with a line containing a single integer ln100000, the number of guard towers. The next n lines correspond to the n guards: each line contains an integer, the number of awards the guard requires. Each guard requires at least 1, and at most l00000 awards. Guard iand i + 1 are neighbors, they cannot receive the same award. The first guard and the last guard are also neighbors.

The input is terminated by a block with n = 0.

Output

For each test case, you have to output a line containing a single integer, the minimum number x of award types that allows us to motivate the guards. That is, if we have x types of awards, then we can give as many awards to each guard as he requires, and we can do it in such a way that the same type of award is not given to neighboring guards. A guard can receive only one award from each type.

Sample Input

3
4
2
2
5
2
2
2
2
2
5
1
1
1
1
1
0

Sample Output

8
5
3 题目大意:有n个人围成一个圈,其中第i个人想要ri 个不同的礼物。相邻的两个人可以聊天,炫耀自己的礼物。如果两个相邻的人拥有同一种礼物,则双方都会很不高兴。问:一共需要多少种礼物才能满足所有人的需要?假设每种礼物有无穷多个,不相邻的两个人不会聊天,所以即使拿到相同的礼物也没关系。
  比如,一共有5个人,每个人都要一个礼物,则至少需要3种礼物。如果把这3中礼物编号为1,2,3,则5个人拿到的礼物应分别是:1,2,1,2,3.如果每个人要两个礼物,则至少要5种礼物,且5个人拿到的礼物集合应该是:{1,2},{3,4},{1,5},{2,3},{4,5}。 分析:如果n为偶数,那么答案为相邻的两个人的r值之和的最大值,即p=max{ri+ri+1}(i=1,2,...,n),规定rn+1 = r1 。不难看出,这个数值是答案的下限,而且还可以构造出只用p种礼物的方案:对于编号为i的人,如果i是奇数,从前边开始取;如果i是偶数,从后边开始取。
  n为奇数的情况,需要二分答案,假设已知共有p种礼物,设第1个人的礼物是1~r1,不难发现最优的分配策略一定是这样的:编号为偶数的人尽量往前取,编号为奇数的人尽量往后取。这样编号为n的人在不冲突的前提下,尽可能的往后取了rn样东西,最后判定编号为1的人和编号为n的人是否冲突即可。比如,n=5,A={2,2,5,2,5},p=8时,则第1个人取{1,2},第2个人取{3,4},第3个人取{8,7,6,5,2},第4个人取{1,3},第5个人取{8,7,6,5,4},由于第1个人与第5个人不冲突,所以p=8是可行的。 代码如下:
 #include<cstdio>
#include<algorithm>
using namespace std; const int maxn = + ;
int n, r[maxn], left[maxn], right[maxn]; // 测试p个礼物是否足够。
// left[i]是第i个人拿到的“左边的礼物”总数,right类似
bool test(int p) {
int x = r[], y = p - r[];
left[] = x; right[] = ;
for(int i = ; i <= n; i++) {
if(i % == ) {
right[i] = min(y - right[i-], r[i]); // 尽量拿右边的礼物
left[i] = r[i] - right[i];
}
else {
left[i] = min(x - left[i-], r[i]); // 尽量拿左边的礼物
right[i] = r[i] - left[i];
}
}
return left[n] == ;
} int main() {
int n;
while(scanf("%d", &n) == && n) {
for(int i = ; i <= n; i++) scanf("%d", &r[i]);
r[n+] = r[]; int L = , R = ;
for(int i = ; i <= n; i++) L = max(L, r[i] + r[i+]);
if(n % == ) {
for(int i = ; i <= n; i++) R = max(R, r[i]*);
while(L < R) {
int M = L + (R-L)/;
if(test(M)) R = M; else L = M+;
}
}
printf("%d\n", L);
}
return ;
}

 

LA 3177 Beijing Guards(二分法 贪心)的更多相关文章

  1. Uva LA 3177 - Beijing Guards 贪心,特例分析,判断器+二分,记录区间内状态数目来染色 难度: 3

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  2. UVALive 3177 Beijing Guards

    题目大意:给定一个环,每个人要得到Needi种物品,相邻的人之间不能得到相同的,问至少需要几种. 首先把n=1特判掉. 然后在n为偶数的时候,答案就是max(Needi+Needi+1)(包括(1,n ...

  3. UVa 1335 Beijing Guards (二分+贪心)

    题意:n 个人成一个圈,每个人想要 ri 种不同的礼物,要求相邻两个人没有相同的,求最少需要多少礼物. 析:如果 n 是偶数,那么答案一定是相邻两个人的礼物总种数之和的最大值,那么如果是奇数,就没那么 ...

  4. LA3177 Beijing Guards

    Beijing Guards Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the ...

  5. 题解 UVA1335 【Beijing Guards】

    UVA1335 Beijing Guards 双倍经验:P4409 [ZJOI2006]皇帝的烦恼 如果只是一条链,第一个护卫不与最后一个护卫相邻,那么直接贪心,找出最大的相邻数的和. 当变成环,贪心 ...

  6. uva 1335 - Beijing Guards(二分)

    题目链接:uva 1335 - Beijing Guards 题目大意:有n个人为成一个圈,其中第i个人想要r[i]种不同的礼物,相邻的两个人可以聊天,炫耀自己的礼物.如果两个相邻的人拥有同一种礼物, ...

  7. 【二分答案+贪心】UVa 1335 - Beijing Guards

    Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the Imperial City ...

  8. UVA-1335(UVALive-3177) Beijing Guards 贪心 二分

    题面 题意:有n个人为成一个圈,其中第i个人想要r[i]种不同的礼物,相邻的两个人可以聊天,炫耀自己的礼物.如果两个相邻的人拥有同一种礼物,则双方都会很不高兴,问最少需要多少种不同的礼物才能满足所有人 ...

  9. poj3122-Pie(二分法+贪心思想)

    一,题意: 有f+1个人(包括自己),n块披萨pie,给你每块pie的半径,要你公平的把尽可能多的pie分给每一个人 而且每个人得到的pie来自一个pie,不能拼凑,多余的边角丢掉.二,思路: 1,输 ...

随机推荐

  1. HW3.22

    import java.util.Scanner; public class Solution { public static void main(String[] args) { Scanner i ...

  2. How to select a OptionSet on ms sqlserver database for Microsoft Dynamics CRM

    OptionSet: Select * from StringMap Global OptionSet: select  os.Name, l.Label from AttributePicklist ...

  3. hdoj 1977 Consecutive sum II

    Consecutive sum II Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. SSIS执行SQL任务时加入参数

    昨天开发的SSIS包中,获取ERP系统parttran表时,数据量比较大,达到255万多,因为SQL执行的关系,致使处理时效率很慢,所以就想用增量更新的方法处理该表数据.这是增量更新的SQL任务集合, ...

  5. C# 读取 timestamp 时间戳 值为byte[] 类型时转换为时间戳字符串

    C# 中如何读取出来的时间戳为 byte[] 类型的话,用以下方式转换成 16进制字符串 string tmpUfts = "0x"+ BitConverter.ToString( ...

  6. Windows Server 2012 R2中的网络诊断命令

    Get-NetAdapter Get-NetIPAddress Get-NetIPConfiguration(GIP) TNC :Pinging Servers and Trace Route tnc ...

  7. TFS 2010 让安装更简单,也让VSS成为历史

    一转眼VS 2010 RC(Release Candidate)版本号已经公布一月多了,RTM(Release To Manufacturer)版本号也快妥了,已经进入了最后的倒计时,仅仅等4月12号 ...

  8. 数据库中substring的使用方法 CONVERT(varchar(12) , getdate(), 112 )

    Sqlserver中经常要操作一些时间类型的字段转换,我又不太记得住,所以搜集了以下的一些SqlserverConvertDateTime相关的资料发表在自己的小站里,方便自己以后要用的时候寻找,望对 ...

  9. mac上SVN项目管理,提示被锁定的解决方法

    问题 mac上SVN项目管理,提示被锁定.不能commit.也不能update.提示 clean the working copy and then. .. 解决方法 watermark/2/text ...

  10. cocoapods使用指南

    什么是cocoapods cocoapods是库管理工具. cocoapods的用途 解决库之间的依赖关系.如前文所述: 一个开源的项目可能是另一个项目的基础, A依赖B, B依赖C和D, D又依赖E ...