分析:令f(x)为1到n的gcd(i,j)==x的个数

F(x)为1到n的x|gcd(i,j)的对数

显然F(n)=∑n|df(d)

然后由莫比乌斯反演可得f(n)=∑n|d μ(d/n)*F(d)

由题目显然可得,令cnt=n/x,当cnt<3时,F(x)为0,cnt>=3,F(x)=cnt*(cnt-1)*(cnt-2)/6

然后就是暴力,复杂度,O(T*n)

注:题目链接https://icpc.njust.edu.cn/Problem/Local/1923/

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
using namespace std;
typedef long long LL;
const int N=1e5+;
int n,m,T,prime[N],mu[N];
bool vis[N];
void getmu()
{
mu[] = ;
int cnt = ;
for(int i=; i<=N-; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
mu[i] = -;
}
for(int j=; j<cnt&&i*prime[j]<=N-; j++)
{
vis[i*prime[j]] = ;
if(i%prime[j]) mu[i*prime[j]] = -mu[i];
else
{
mu[i*prime[j]] = ;
break;
}
}
}
}
LL F(int x){
LL tmp=n/x;
if(tmp<)return ;
return tmp*(tmp-)/*(tmp-)/;
}
int main(){
getmu();
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
LL ans=;
for(int i=;i*m<=n;++i){
ans+=mu[i]*F(i*m);
}
printf("%lld\n",ans);
}
return ;
}

njust oj triple 莫比乌斯反演的更多相关文章

  1. 【BZOJ2693】jzptab(莫比乌斯反演)

    [BZOJ2693]jzptab(莫比乌斯反演) 题面 讨厌权限题,只能跑到别的OJ上交 和这题是一样的 多组数据 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 前 ...

  2. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  3. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

  4. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  5. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  6. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  7. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  8. 莫比乌斯函数筛法 & 莫比乌斯反演

    模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...

  9. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

随机推荐

  1. javascipt学习笔记1

    一.javascript 部分 1.整理 <<javascript>> 要学习哪些章节 及核心内容? ①javascript简介 核心技术点:javascript定义 作用特点 ...

  2. centos6.5 mysql配置整理

    安装 // 安装mysql yum -y install mysql-server //设置开机启动 chkconfig mysqld on //启动MySql服务 service mysqld st ...

  3. ASP.NET 学习小记 -- “迷你”MVC实现(1)

    ASP.NET 由于采用了管道式设计,具有很好的扩展性.整个ASP.NET MVC应用框架就是通过扩展ASP.NET实现的.通过ASP.NET的管道设计,我们知道,ASP.NET的扩展点主要是体现在H ...

  4. gradient css

    <!DOCTYPE html> <html> <head> <title></title> <script src="js/ ...

  5. 在图层上使用CATransform3D制做三维动画-b

    在UIView上,我们可以使用CGAffineTransform来对视图进行:平移(translation),旋转(Rotation),缩 放(scale),倾斜(Invert)操作,但这些操作是没有 ...

  6. noj [1479] How many (01背包||DP||DFS)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...

  7. python 删除文件和文件夹

    1.删除文件 '''删除文件 ''' def DeleteFile(strFileName): fileName = unicode(strFileName, "utf8") if ...

  8. mysql function 与 procedure

    Mysql 的 function 和 procedure 有啥区别呢 ? 网上搜索后说 function 有返回值, procedure 无返回值. 1.return  从function 的语法角度 ...

  9. Linux下 config/configure/Configure、make 、make test/make check、sudo make install 的作用

    转自Linux下 config/configure/Configure.make .make test/make check.sudo make install 的作用 这些都是典型的使用GNU的AU ...

  10. python:UnicodeDecodeError: ‘ascii’ codec can’t decode byte 0xef in position xxx: ordinal not in range(128)

    执行sql_cmd = "select * from item_base where item_id in " + item_ids_str时报错 solve: import sy ...