Codeforces Round #656 (Div. 3) 题解
A. Three Pairwise Maximums #构造
题目链接
题意
给定三个正整数\(x,y,z\),要求找出正整数\(a,b,c\),满足\(x=max(a,b), y=max(a,c),z=max(b,c)\)
分析
我们可以先将\(x,y,z\)降序排序得到\(z\leq y\leq x\)。由于\(x\)是\(a,b,c\)三者最值,且通过三个关系中\(x\)所代表的数字一定出现两次,可以推断出,\(y=x\),如果最值没有出现两次,说明我们不可能构造出\(a,b,c\)。
既然题目让我们构造,构造且要满足\(max(a,b)=max(a,c)\),那么不妨设\(a\)为最大值,即\(a=x=y\)。由于\(z\)能推出\(b,c\)关系,我们又不妨将\(b\)赋为\(z\)(三值中第二大)。三者最小值不易准确确定,直接将\(c\)赋值为1,作为三者中的最小值,十分稳妥。
#include <algorithm>
#include <cstdio>
#include <iostream>
using namespace std;
typedef long long ll;
const int MAXN = 1e5 + 5;
const int MOD = 1e4 + 7;
int n, m, q;
int main(){
scanf("%d", &q);
while(q--){
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
if(x<y) swap(x,y);
if(x<z) swap(x,z);
if(y<z) swap(y,z); //排序一下
if(x != y) {
printf("NO\n");
continue;
}
else{
printf("YES\n");
printf("%d %d %d\n", x, z, 1);
}
}
return 0;
}
C. Make It Good #贪心
题目链接
题意
“好数组”定义为,一个数组\(b\),我们只从该数组最左边,或者最右边,将所有元素依次取出并放到\(c\)数组,该\(c\)数组是个不降序列,则称\(b\)数组为“好数组”。
现给定数组\(a\),你需要从数组\(a\)的前几个元素删去,得到一个“好数组”。现要你求出删除的前几个元素至少需要多少。比如数组a={4 3 3 8 4 5 2}
,你至少需要删除前面4个元素,得到的数组b={4 5 2}
才是个好数组。
分析
不难分析,“好数组”中的元素关系必然是\(b_1 \leq b2 \leq ... \leq\) \(b_{mi}\) \(\geq ... \geq b_k\),其中\(b_{mi}\)为数组\(b\)中最大值(不一定是数组\(a\)中最大值),简单来说,我们就是要从\(a\)数组中找到“山峰”。
由于我们只能删除数组\(a\)中前面几个元素,因而后面元素受到的影响很少,于是我们用一右指针\(hi\),从数组\(a\)的后面往前面遍历,只要\(a[hi-1]\geq a[hi]\)就往前进(相当于走上坡),一旦遇到\(a[hi-1] \leq a[hi]\)说明到达极值点。我们再继续往前面(往数组左端)遍历,只要\(a[hi-1]\leq a[hi]\)就往前进(相当于走下坡),一旦遇到\(a[hi-1] \geq a[hi]\)说明到达我们到达山底,即\(a[1, ...hi-1]\)的元素都需要删去,\(a[hi, n]\)方为好数组。敲代码时注意下边界。
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const int MAXN = 2e5 + 5;
int n, m, q;
int a[MAXN];
int main(){
scanf("%d", &q);
while(q--){
scanf("%d", &n);
for(int i =1 ; i <= n; i++) scanf("%d", &a[i]);
int hi = n;
while(hi >= 1 && a[hi-1] >= a[hi]) hi--; //走上坡
while(hi >= 1 && a[hi - 1] <= a[hi]) hi--; //走下坡
if(hi - 1 >= 0) printf("%d\n", hi - 1);
else printf("0\n");
}
return 0;
}
D. a-Good String #暴力深搜 #分治
题目链接
题意
“\(a\)-好串”定义为,不小于一个元素的串,满足以下其中一个条件即可:
- 若长度为1,且包含的字符恰好为\(a\)。
- 若长度大于1,且它的左半部分所有字符均为\(a\),而另一半的串是“\(a+1\)-好串”(\(a+1\)字符,即为字符a在字母表中下一个字符)
- 若长度大于1,且它的右半部分所有字符均为\(a\),而另一半的串是“\(a+1\)-好串”
\(t(\leq2\times 10^{5})\)组询问,给定长度为\(n(其中\sum n \leq 2\times 10^{5})\)串,你可以对串中任意字符转变为其他任意字符,每个字符的转变作为一次操作,现要你求出将串转变为“\(a-\)好串”的最少次数
分析
先将串中所有种字符进行前缀和统计,然后对于串的前后部分暴力搜索一下即可,因为递归下来,大约有\(logn\)种子串,层数大约为十多层,\(O(nlogn)\)复杂度能够通过\(t\)组询问。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <string>
using namespace std;
typedef long long ll;
const int MAXN = 150000;
int q, n, sum[30][MAXN];
string str;
int dfs(int lo, int hi, int cur){
int mid = (lo + hi) >> 1, len = hi - lo + 1;
if(len <= 1) //边界情况
return len - sum[cur][hi] + sum[cur][hi - 1];
int pre = (len >> 1) - sum[cur][mid] + sum[cur][lo - 1];
int lat = (len >> 1) - sum[cur][hi] + sum[cur][mid];
int res = min(dfs(lo, mid, cur+1) + lat, dfs(mid+1, hi, cur+1) + pre);
return res;
}
void preCal(){
for (int i = 1; i <= 26; i++){
for (int j = 0; j < str.length(); j++){
sum[i][j + 1] = sum[i][j];
if(str[j] - 'a' + 1 == i)
sum[i][j + 1]++;
}
}
}
int main(){
scanf("%d", &q);
while(q--){
scanf("%d", &n); cin >> str;
preCal();
printf("%d\n", dfs(1, n, 1));
}
}
E. Directing Edges #拓扑排序
题目链接
题意
给定一个图,里面既包含有向边,也包含无向边,并保证初始情况下的图不存在平行边与自环,现要你将图中所有无向边改变为有向边(方向自定义),使得图不存在任何一个有向环。如果无法保证不出现有向环,输出"NO"。否则需要你输出所有边的连接信息。
分析
容易知道,初始情况下的无向边并不会影响图是否存在有向环,应关注于当前的所有有向边所组成的图。如何判断是否存在有向环,利用拓扑排序算法即可,但别忘了要将拓扑序列存下来,这是用于判断无向边指向的方向。如果一条无向边中的顶点\(a\)的拓扑序小于顶点\(b\),那么\(a\)应该指向\(b\),反之,让\(b\)指向\(a\)。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <stack>
#include <string>
#include <vector>
using namespace std;
typedef long long ll;
const int MAXN = 2e5+5;
int q, n, m;
struct Edge{ //用于输出
int u, v;
} E[MAXN << 1];
struct BuildEdge{ //用于拓扑排序
int to, nextNbr;
} BE[MAXN << 1];
int H[MAXN], tot = 0, InD[MAXN], num = 0;
int ans[MAXN];
void addEdge(int u, int v){
tot++;
BE[tot] = {v, H[u]};
H[u] = tot;
}
bool ToSort(){
queue<int> myque;
int res = 0;
for(int i = 1; i <= n; i++){
if(InD[i] == 0){
myque.push(i);
ans[i] = ++res; //记录拓扑序
}
}
while(!myque.empty()){
int cur = myque.front();
myque.pop();
for(int i = H[cur]; i >= 0; i = BE[i].nextNbr){
int v = BE[i].to; InD[v]--;
if(InD[v] == 0){
myque.push(v);
ans[v] = ++res; //记录拓扑序
}
}
}
return (res != n); //如果不相等,说明存在有向环
}
void Init(){ //初始化
memset(H, -1, sizeof(H));
memset(ans, 0, sizeof(ans));
memset(InD, 0, sizeof(InD));
tot = num = 0;
for (int i = 1; i <= m; i++) BE[i] = {-1, -1};
}
int main(){
scanf("%d", &q);
while(q--){
scanf("%d%d", &n, &m);
Init();
for (int i = 1, u, v, opt; i <= m; i++){
scanf("%d%d%d", &opt, &u, &v);
E[++num] = {u, v};
if(opt == 1){ //有向边建图
addEdge(u, v);
InD[v]++;
}
}
bool isLoop = ToSort();
if(isLoop) printf("NO\n");
else{
printf("YES\n");
for(int i = 1; i <= m; i++){
int u = E[i].u, v = E[i].v;
if(ans[u] < ans[v]) printf("%d %d\n", u, v);
else printf("%d %d\n", v, u);
}
}
}
return 0;
}
Codeforces Round #656 (Div. 3) 题解的更多相关文章
- Codeforces Round #182 (Div. 1)题解【ABCD】
Codeforces Round #182 (Div. 1)题解 A题:Yaroslav and Sequence1 题意: 给你\(2*n+1\)个元素,你每次可以进行无数种操作,每次操作必须选择其 ...
- Codeforces Round #608 (Div. 2) 题解
目录 Codeforces Round #608 (Div. 2) 题解 前言 A. Suits 题意 做法 程序 B. Blocks 题意 做法 程序 C. Shawarma Tent 题意 做法 ...
- Codeforces Round #525 (Div. 2)题解
Codeforces Round #525 (Div. 2)题解 题解 CF1088A [Ehab and another construction problem] 依据题意枚举即可 # inclu ...
- Codeforces Round #528 (Div. 2)题解
Codeforces Round #528 (Div. 2)题解 A. Right-Left Cipher 很明显这道题按题意逆序解码即可 Code: # include <bits/stdc+ ...
- Codeforces Round #466 (Div. 2) 题解940A 940B 940C 940D 940E 940F
Codeforces Round #466 (Div. 2) 题解 A.Points on the line 题目大意: 给你一个数列,定义数列的权值为最大值减去最小值,问最少删除几个数,使得数列的权 ...
- Codeforces Round #677 (Div. 3) 题解
Codeforces Round #677 (Div. 3) 题解 A. Boring Apartments 题目 题解 简单签到题,直接数,小于这个数的\(+10\). 代码 #include &l ...
- Codeforces Round #665 (Div. 2) 题解
Codeforces Round #665 (Div. 2) 题解 写得有点晚了,估计都官方题解看完切掉了,没人看我的了qaq. 目录 Codeforces Round #665 (Div. 2) 题 ...
- Codeforces Round #160 (Div. 1) 题解【ABCD】
Codeforces Round #160 (Div. 1) A - Maxim and Discounts 题意 给你n个折扣,m个物品,每个折扣都可以使用无限次,每次你使用第i个折扣的时候,你必须 ...
- Codeforces Round #383 (Div. 2) 题解【ABCDE】
Codeforces Round #383 (Div. 2) A. Arpa's hard exam and Mehrdad's naive cheat 题意 求1378^n mod 10 题解 直接 ...
随机推荐
- 【总结】nginx基础
一.nginx简介 1.什么是nginx? Nginx 是高性能的 HTTP 和反向代理的服务器,处理高并发能力是十分强大的,支持高达 50,000 个并发连接数.功能:反向代理,负载均衡,动静分离 ...
- 4G DTU为什么要具有透传的功能
4G DTU为什么要透传 透传的目的就是为了在数据传输的过程中不对数据做任何出来,实现发送方和接收方的数据完全一样,长度和内容完全没有变化.它主要是使用在智能设备之间的远程串口数据传输,是一种和传输方 ...
- uniapp请求方法的封装
之前在接触uniapp做小程序项目时候,因为不太熟悉,遇到了不少尴尬的时刻,请求方法的封装算是灵魂啊有木有,今天看到有人问题,就把我自己写的发出来让大家参考一下吧. 请求方法的封装我一般用的是prom ...
- 编排yml文件剖析
# yaml格式的pod定义文件完整内容: apiVersion: v1 #必选,版本号,例如v1 kind: Pod #必选,Pod metadata: #必选, ...
- CF1271E Common Number
数学+二分 连续打了3场$codeforces$,深深的被各种模拟贪心分类讨论的$C$,$D$题给恶心到了 还有永远看到题一脸懵的$B$题 首先考虑画出不同函数值迭代转移的关系,要注意考虑连边是否能成 ...
- Lte Design Documentation之RRC
RRC 特点 RRC模型在模拟器中提供以下功能 生成(在eNB中)和解释(在UE中)信息块(尤其是MIB和SIB1, SIB2) 初始化小区选择 RRC连接建立过程 RRC重新配置程序, 支持以下方式 ...
- c++ templates 第二版(英文)
关注公众号:红宸笑. 回复:电子书 即可
- Spring源码分析之循环依赖及解决方案
Spring源码分析之循环依赖及解决方案 往期文章: Spring源码分析之预启动流程 Spring源码分析之BeanFactory体系结构 Spring源码分析之BeanFactoryPostPro ...
- javascript函数式编程基础随笔
JavaScript 作为一种典型的多范式编程语言,这两年随着React\vue的火热,函数式编程的概念也开始流行起来,lodashJS.folktale等多种开源库都使用了函数式的特性. 一.认识函 ...
- python之 《进程之间数据交互和进程池》
1.进程q 进程呢就相当于一个房子,线程就相当于是房子里面在工作的人,那么一个房子的空间对于房子里面的人来说是共享的, 现在是多进程,也就是说有许多房子,很显然这个房子的空间只属于这个房子,不会属于其 ...