最小生成树的java实现
文章目录
笔记来源:中国大学MOOC王道考研
一、概念
连通图:图中任意两点都是连通的,那么图被称作连通图
生成树:连通图包含全部顶点的一个极小连通子图
最小生成树:在含有n个顶点的带权无向连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树(不一定唯一)。
- 性质1:不一定唯一
- 性质2:如果所有边的权重都不相同,则一定唯一
- 性质3:如果连通图只有n-1条边,则最小生成树就是它本身
- 性质4:最小生成树的边数为n-1
二、算法
2.1 Prim算法
步骤如下:
初始化,取任意顶点加入结果树:
加入A相邻的且不在结果树中,并且是最小权值的点C
加入与A,C相邻的且不在结果树中,并且是最小权值的点B(BC最小)
重复上述步骤,直到所有顶点都进入结果树:
java代码实现如下:
我们需要用两个数组来实现过程:
- min_weight[n]:当前结果树到所有顶点的最短距离
- adjvex[n]:adjvex[C]=0,代表C是通过A加入结果树的(0是A的下标)
/*
* 首先我们给出图的存储结构
*/
package MST;
import java.util.List;
public class Graph {
/*
* 点的存储
*/
private List<String> vex;
/*
* 边的存储
*/
private int edges[][];
public Graph(List<String> vex, int[][] edges) {
this.vex = vex;
this.edges = edges;
}
public List<String> getVex() {
return vex;
}
public void setVex(List<String> vex) {
this.vex = vex;
}
public int[][] getEdges() {
return edges;
}
public void setEdges(int edges[][]) {
this.edges = edges;
}
public int getVexNum() {
return vex.size();
}
public int getEdgeNum() {
return edges.length;
}
}
然后初始化图:
public class Prime {
int m = Integer.MAX_VALUE;
int[][] edges = {
{0, 3, 1, m, 4},
{3, 0, 2, m, m},
{1, 2, 0, 5, 6},
{m, m, 5, 0, m},
{4, m, 6, m, 0},
};
//打印最小生成树
void MST_Prime(Graph G) {
int vexNum = G.getVexNum();//节点个数
int[] min_weight = new int[vexNum];//当前结果树到所有顶点的最短距离
int[] adjvex = new int[vexNum];//adjvex[C]=0,代表C是通过A加入结果树的(0是A的下标)
/*初始化两个辅助数组*/
for(int i = 0; i < vexNum; i++) {
min_weight[i] = (G.getEdges())[0][i];//第一个顶点到其余顶点的距离
adjvex[i]=0;
}
int min_edg;//当前挑选的最小权值
int min_vex = 0;//最小权值对应的节点下标
/*循环剩余n-1个点*/
for(int i = 1; i < vexNum; i++) {
min_edg = Integer.MAX_VALUE;
for(int j = 1; j < vexNum; j++) {
if(min_weight[j]!=0 && min_weight[j] < min_edg) {
//寻找还没有被挑选进来的,最小权重的点
min_edg = min_weight[j];
min_vex = j;
}
}
min_weight[min_vex] = 0;//纳入结果树
/*修改对应辅助数组的值*/
for(int j = 0; j < vexNum; j++) {
if(min_weight[j]!=0 && (G.getEdges())[min_vex][j]<min_weight[j] && (G.getEdges())[min_vex][j]>0) {
min_weight[j] = (G.getEdges())[min_vex][j];
adjvex[j]=min_vex;
}
}
int pre = adjvex[min_vex];
int end = min_vex;
System.out.println("("+G.getVex().get(pre)+","+G.getVex().get(end)+")");
}
}
//初始化图
Graph init() {
List<String> vex=new ArrayList<String>();
vex.add("A");
vex.add("B");
vex.add("C");
vex.add("D");
vex.add("E");
Graph graph = new Graph(vex, edges);
return graph;
}
public static void main(String[] args) {
Prime prime = new Prime();
Graph graph = prime.init();
prime.MST_Prime(graph);
}
}
打印结果如下:
(A,C)
(C,B)
(A,E)
(C,D)
2.2 Kruskal算法
步骤如下:
每个顶点都是独立的树
挑选最短的边AC,加入边集中
依次加入BC,AB,但是AB构成了回路,舍弃
重复直到取了n-1条边
java代码实现如下:
使用 并查集、堆排序、kruskal算法
引用并查集博客:Java实现并查集
//首先我们实现并查集(用来判断是否构成回路--是否属于一个并查集)
public class UnionFindSet {
//查询树的根
public static int find(int x, int [] par){
if(par[x] == x){
return x;
}else{
//压缩路径,第二次查询可以直接返回x的根而不用递归
return par[x] = find(par[x], par);
}
}
//合并
public static void unite(int x, int y, int [] par, int [] rank){
x = find(x, par);
y = find(y, par);
if(x == y){
return ;
}
if(rank[x] < rank[y]){
par[x] = y;
}else{
par[y] = x;
if(rank[x] == rank[y]) rank[x]++;
}
}
//判断x和y是否属于同一个集合
public static boolean same(int x, int y, int [] par){
return find(x, par) == find(y, par);
}
}
然后实现堆排序(稍作修改):
堆排序参考这篇博客:Java实现堆排序和图解
public class HeapSort {
public static void sort(Edge[] arr){
//1.构建大顶堆
for(int i=arr.length/2-1;i>=0;i--){
//从第一个非叶子结点从下至上,从右至左调整结构
adjustHeap(arr,i,arr.length);
}
//2.调整堆结构+交换堆顶元素与末尾元素
for(int j=arr.length-1;j>0;j--){
swap(arr,0,j);//将堆顶元素与末尾元素进行交换
adjustHeap(arr,0,j);//重新对堆进行调整
}
}
/**
* 调整大顶堆(仅是调整过程,建立在大顶堆已构建的基础上)
* @param arr
* @param i
* @param length
*/
public static void adjustHeap(Edge[] arr,int i,int length){
Edge temp = arr[i];//先取出当前元素i
for(int k=i*2+1;k<length;k=k*2+1){//从i结点的左子结点开始,也就是2i+1处开始
if(k+1<length && arr[k].weight<arr[k+1].weight){//如果左子结点小于右子结点,k指向右子结点
k++;
}
if(arr[k].weight >temp.weight){//如果子节点大于父节点,将子节点值赋给父节点(不用进行交换)
arr[i] = arr[k];
i = k;
}else{
break;
}
}
arr[i] = temp;//将temp值放到最终的位置
}
/**
* 交换元素
* @param arr
* @param a
* @param b
*/
public static void swap(Edge[] arr,int a ,int b){
Edge temp=arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
}
最后我们实现Kruskal算法:
package MST;
import java.util.ArrayList;
import java.util.List;
public class Kruskal {
int m = Integer.MAX_VALUE;
int[][] arr = {
{0, 3, 1, m, 4},
{3, 0, 2, m, m},
{1, 2, 0, 5, 6},
{m, m, 5, 0, m},
{4, m, 6, m, 0},
};
Graph init() {
List<String> vex=new ArrayList<String>();
vex.add("A");
vex.add("B");
vex.add("C");
vex.add("D");
vex.add("E");
Graph graph = new Graph(vex, arr);
return graph;
}
//kruskal算法
void MST_Kruskal(Graph G, Edge[] edges, int[] parents, int[] rank) {
HeapSort.sort(edges);//堆排序
for(int i = 0; i < G.getEdgeNum(); i++) {
if(!UnionFindSet.same(edges[i].a, edges[i].b, parents)) {
UnionFindSet.unite(edges[i].a, edges[i].b, parents, rank);
System.out.println("("+G.getVex().get(edges[i].a)+","+G.getVex().get(edges[i].b)+")");
}
}
}
public static void main(String[] args) {
Kruskal kruskal = new Kruskal();
Graph graph = kruskal.init();
int[] parents = {0,1,2,3,4};
int[] rank = {1,1,1,1,1};
Edge[] edges = new Edge[10];
int index = 0;
for(int i = 0; i < 5;i++) {
for(int j=0;j<i;j++) {
edges[index] = new Edge();
edges[index].weight = kruskal.arr[i][j];
edges[index].a = i;
edges[index++].b = j;
}
}
kruskal.MST_Kruskal(graph, edges, parents, rank);
}
}
输出结构为:
(C,A)
(C,B)
(E,A)
(D,C)
最小生成树的java实现的更多相关文章
- 图的最小生成树(java实现)
1.图的最小生成树(贪心算法) 我两个算法的输出都是数组表示的,当前的索引值和当前索引对应的数据就是通路,比如parent[2] = 5;即2和5之间有一个通路,第二个可能比较好理解,第一个有点混乱 ...
- 最小生成树之kruskal方法实现 (java)
今天是个阴天,下了点雨,work ......... 步骤:将所有边排序,然后不断从小到大加上边,这个过程最重要的是避免环的产生,此处用并查集.(nyoj 38) package 最小生成树; imp ...
- java实现最小生成树的prim算法和kruskal算法
在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权 ...
- 【惊喜】Github爆火的java面试神技+java核心面试技术已开发下载,大厂内都传疯了!
前言 今年,由于疫情的影响,很多互联网企业都在缩减招聘成本.作为程序员,原本这两年就面临竞争激烈.年龄危机的问题,而现在的求职局面又完全是企业在挑人的状态. 所以最好能在空闲的时候看看大厂相匹配的技术 ...
- Java Web学习之路
编程基础 1-1 常用数据结构 数组.链表.堆.栈.队列.Hash表.二叉树等1-2 算法思想 算法时间复杂度和空间复杂度的分析计算 1-2 算法思想:递推.递归.穷举.贪心.分治.动态规划.迭代.分 ...
- Spark案例分析
一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /* ...
- 数据结构-图-Java实现:有向图 图存储(邻接矩阵),最小生成树,广度深度遍历,图的连通性,最短路径1
import java.util.ArrayList; import java.util.List; // 模块E public class AdjMatrixGraph<E> { pro ...
- 图的存储,搜索,遍历,广度优先算法和深度优先算法,最小生成树-Java实现
1)用邻接矩阵方式进行图的存储.如果一个图有n个节点,则可以用n*n的二维数组来存储图中的各个节点关系. 对上面图中各个节点分别编号,ABCDEF分别设置为012345.那么AB AC AD 关系可以 ...
- java用Kruskal实现最小生成树
今天更新这篇文章超级激动,因为我会最小生成树的算法了(其实昨天就开始研究了,只是昨天参加牛客网的算法比赛,结果又被虐了,好难过~) 最小生成树的算法,其实学了数据结构就会有一定的基础,Kruskal算 ...
随机推荐
- docer
docker默认是不保存文件的,包保存文件需要进行映射 dockerfile编写如下 直接下面的命令会失败 因为run后面的命令/bin/bash会失败,执行的是dockffile中定义的httpd ...
- 使用Kubernetes、K3s和Traefik2进行本地开发
作者简介 Vyacheslav,拥有运维和项目管理经验的软件工程师 这篇文章将承接我此前搭建的本地Docker开发环境,具体步骤已经放在在以下网址: https://github.com/Vorone ...
- Spring IoC 自定义标签解析
前言 本系列全部基于 Spring 5.2.2.BUILD-SNAPSHOT 版本.因为 Spring 整个体系太过于庞大,所以只会进行关键部分的源码解析. 本篇文章主要介绍 Spring IoC 容 ...
- linux主机连接sftp报错received unexpected end-of-file from SFTP server
SFTP 连接主机失败,提示信息如下: 登陆目标主机,编辑查看 /etc/ssh/sshd_config 文件,找到 Subsystem 关键字 替换为 Subsystem sftp internal ...
- 入门大数据---Hive是什么?
这篇文章主要介绍Hive的概念. 简介: Hive中文名叫数据仓库管理系统,之前我们操作MapReduce必须通过编写代码或者通过特殊命令来实现,有了Hive我们通过常用的SQL语句就能操作MapRe ...
- shell基本正则表达式
基本正则表达式 星号* 匹配它前面的字符串或正则表达式任意次(包括0次).比如,“1122*” 将匹配11+1个或多个2,其可能匹配的字符串将是112.1122.112222.11223343等 句点 ...
- 基于opencv的车牌提取项目
初学图像处理,做了一个车牌提取项目,本博客仅仅是为了记录一下学习过程,该项目只具备初级功能,还有待改善 第一部分:车牌倾斜矫正 # 导入所需模块 import cv2 import math from ...
- 双缓冲显示字幕(卡拉ok字幕)
思路: 1.设置定时器SetTime,在Ontime()里面确定显示矩形的大小,让后用DrawText把字铁道矩形上面: 2. int nTextHei = dc.GetTextExtent( m_s ...
- 【写法总结】$.ajax与$.post、$.get 写法区别
原文: https://www.cnblogs.com/asdyzh/p/9807264.html 后台代码: [HttpPost] public string DoLogin(string us ...
- 【vue】---- ElementUI 实现上传Excel
1.功能描述:vue 项目使用 el-upload 实现上传 Excel. 2.功能效果:在el-upload基础上做了样式整改. 3.功能实现: // el-upload 上传组件 <temp ...