用Docker swarm快速部署Nebula Graph集群
用Docker swarm快速部署Nebula Graph集群
一、前言
本文介绍如何使用 Docker Swarm 来部署 Nebula Graph 集群。
二、nebula集群搭建
2.1 环境准备
机器准备
ip |
内存(Gb) |
cpu(核数) |
192.168.1.166 |
16 |
4 |
192.168.1.167 |
16 |
4 |
192.168.1.168 |
16 |
4 |
在安装前确保所有机器已安装docker
2.2 初始化swarm集群
在192.168.1.166机器上执行
$ docker swarm init --advertise-addr 192.168.1.166
Swarm initialized: current node (dxn1zf6l61qsb1josjja83ngz) is now a manager.
To add a worker to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-49nj1cmql0jkz5s954yi3oex3nedyz0fb0xx14ie39trti4wxv-8vxv8rssmk743ojnwacrr2e7c \
192.168.1.166:2377 To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.
2.3 加入worker节点
根据init命令提示内容,加入swarm worker节点,在192.168.1.167 192.168.1.168分别执行
docker swarm join \
--token SWMTKN-1-49nj1cmql0jkz5s954yi3oex3nedyz0fb0xx14ie39trti4wxv-8vxv8rssmk743ojnwacrr2e7c \
192.168.1.166:2377
2.4 验证集群
docker node ls ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
h0az2wzqetpwhl9ybu76yxaen * KF2-DATA-166 Ready Active Reachable 18.06.1-ce
q6jripaolxsl7xqv3cmv5pxji KF2-DATA-167 Ready Active Leader 18.06.1-ce
h1iql1uvm7123h3gon9so69dy KF2-DATA-168 Ready Active 18.06.1-ce
2.5 配置docker stack
vi docker-stack.yml
配置如下内容
1 version: '3.6'
2 services:
3 metad0:
4 image: vesoft/nebula-metad:nightly
5 env_file:
6 - ./nebula.env
7 command:
8 - --meta_server_addrs=192.168.1.166:45500,192.168.1.167:45500,192.168.1.168:45500
9 - --local_ip=192.168.1.166
10 - --ws_ip=192.168.1.166
11 - --port=45500
12 - --data_path=/data/meta
13 - --log_dir=/logs
14 - --v=0
15 - --minloglevel=2
16 deploy:
17 replicas: 1
18 restart_policy:
19 condition: on-failure
20 placement:
21 constraints:
22 - node.hostname == KF2-DATA-166
23 healthcheck:
24 test: ["CMD", "curl", "-f", "http://192.168.1.166:11000/status"]
25 interval: 30s
26 timeout: 10s
27 retries: 3
28 start_period: 20s
29 ports:
30 - target: 11000
31 published: 11000
32 protocol: tcp
33 mode: host
34 - target: 11002
35 published: 11002
36 protocol: tcp
37 mode: host
38 - target: 45500
39 published: 45500
40 protocol: tcp
41 mode: host
42 volumes:
43 - data-metad0:/data/meta
44 - logs-metad0:/logs
45 networks:
46 - nebula-net
47
48 metad1:
49 image: vesoft/nebula-metad:nightly
50 env_file:
51 - ./nebula.env
52 command:
53 - --meta_server_addrs=192.168.1.166:45500,192.168.1.167:45500,192.168.1.168:45500
54 - --local_ip=192.168.1.167
55 - --ws_ip=192.168.1.167
56 - --port=45500
57 - --data_path=/data/meta
58 - --log_dir=/logs
59 - --v=0
60 - --minloglevel=2
61 deploy:
62 replicas: 1
63 restart_policy:
64 condition: on-failure
65 placement:
66 constraints:
67 - node.hostname == KF2-DATA-167
68 healthcheck:
69 test: ["CMD", "curl", "-f", "http://192.168.1.167:11000/status"]
70 interval: 30s
71 timeout: 10s
72 retries: 3
73 start_period: 20s
74 ports:
75 - target: 11000
76 published: 11000
77 protocol: tcp
78 mode: host
79 - target: 11002
80 published: 11002
81 protocol: tcp
82 mode: host
83 - target: 45500
84 published: 45500
85 protocol: tcp
86 mode: host
87 volumes:
88 - data-metad1:/data/meta
89 - logs-metad1:/logs
90 networks:
91 - nebula-net
92
93 metad2:
94 image: vesoft/nebula-metad:nightly
95 env_file:
96 - ./nebula.env
97 command:
98 - --meta_server_addrs=192.168.1.166:45500,192.168.1.167:45500,192.168.1.168:45500
99 - --local_ip=192.168.1.168
100 - --ws_ip=192.168.1.168
101 - --port=45500
102 - --data_path=/data/meta
103 - --log_dir=/logs
104 - --v=0
105 - --minloglevel=2
106 deploy:
107 replicas: 1
108 restart_policy:
109 condition: on-failure
110 placement:
111 constraints:
112 - node.hostname == KF2-DATA-168
113 healthcheck:
114 test: ["CMD", "curl", "-f", "http://192.168.1.168:11000/status"]
115 interval: 30s
116 timeout: 10s
117 retries: 3
118 start_period: 20s
119 ports:
120 - target: 11000
121 published: 11000
122 protocol: tcp
123 mode: host
124 - target: 11002
125 published: 11002
126 protocol: tcp
127 mode: host
128 - target: 45500
129 published: 45500
130 protocol: tcp
131 mode: host
132 volumes:
133 - data-metad2:/data/meta
134 - logs-metad2:/logs
135 networks:
136 - nebula-net
137
138 storaged0:
139 image: vesoft/nebula-storaged:nightly
140 env_file:
141 - ./nebula.env
142 command:
143 - --meta_server_addrs=192.168.1.166:45500,192.168.1.167:45500,192.168.1.168:45500
144 - --local_ip=192.168.1.166
145 - --ws_ip=192.168.1.166
146 - --port=44500
147 - --data_path=/data/storage
148 - --log_dir=/logs
149 - --v=0
150 - --minloglevel=2
151 deploy:
152 replicas: 1
153 restart_policy:
154 condition: on-failure
155 placement:
156 constraints:
157 - node.hostname == KF2-DATA-166
158 depends_on:
159 - metad0
160 - metad1
161 - metad2
162 healthcheck:
163 test: ["CMD", "curl", "-f", "http://192.168.1.166:12000/status"]
164 interval: 30s
165 timeout: 10s
166 retries: 3
167 start_period: 20s
168 ports:
169 - target: 12000
170 published: 12000
171 protocol: tcp
172 mode: host
173 - target: 12002
174 published: 12002
175 protocol: tcp
176 mode: host
177 volumes:
178 - data-storaged0:/data/storage
179 - logs-storaged0:/logs
180 networks:
181 - nebula-net
182 storaged1:
183 image: vesoft/nebula-storaged:nightly
184 env_file:
185 - ./nebula.env
186 command:
187 - --meta_server_addrs=192.168.1.166:45500,192.168.1.167:45500,192.168.1.168:45500
188 - --local_ip=192.168.1.167
189 - --ws_ip=192.168.1.167
190 - --port=44500
191 - --data_path=/data/storage
192 - --log_dir=/logs
193 - --v=0
194 - --minloglevel=2
195 deploy:
196 replicas: 1
197 restart_policy:
198 condition: on-failure
199 placement:
200 constraints:
201 - node.hostname == KF2-DATA-167
202 depends_on:
203 - metad0
204 - metad1
205 - metad2
206 healthcheck:
207 test: ["CMD", "curl", "-f", "http://192.168.1.167:12000/status"]
208 interval: 30s
209 timeout: 10s
210 retries: 3
211 start_period: 20s
212 ports:
213 - target: 12000
214 published: 12000
215 protocol: tcp
216 mode: host
217 - target: 12002
218 published: 12004
219 protocol: tcp
220 mode: host
221 volumes:
222 - data-storaged1:/data/storage
223 - logs-storaged1:/logs
224 networks:
225 - nebula-net
226
227 storaged2:
228 image: vesoft/nebula-storaged:nightly
229 env_file:
230 - ./nebula.env
231 command:
232 - --meta_server_addrs=192.168.1.166:45500,192.168.1.167:45500,192.168.1.168:45500
233 - --local_ip=192.168.1.168
234 - --ws_ip=192.168.1.168
235 - --port=44500
236 - --data_path=/data/storage
237 - --log_dir=/logs
238 - --v=0
239 - --minloglevel=2
240 deploy:
241 replicas: 1
242 restart_policy:
243 condition: on-failure
244 placement:
245 constraints:
246 - node.hostname == KF2-DATA-168
247 depends_on:
248 - metad0
249 - metad1
250 - metad2
251 healthcheck:
252 test: ["CMD", "curl", "-f", "http://192.168.1.168:12000/status"]
253 interval: 30s
254 timeout: 10s
255 retries: 3
256 start_period: 20s
257 ports:
258 - target: 12000
259 published: 12000
260 protocol: tcp
261 mode: host
262 - target: 12002
263 published: 12006
264 protocol: tcp
265 mode: host
266 volumes:
267 - data-storaged2:/data/storage
268 - logs-storaged2:/logs
269 networks:
270 - nebula-net
271 graphd1:
272 image: vesoft/nebula-graphd:nightly
273 env_file:
274 - ./nebula.env
275 command:
276 - --meta_server_addrs=192.168.1.166:45500,192.168.1.167:45500,192.168.1.168:45500
277 - --port=3699
278 - --ws_ip=192.168.1.166
279 - --log_dir=/logs
280 - --v=0
281 - --minloglevel=2
282 deploy:
283 replicas: 1
284 restart_policy:
285 condition: on-failure
286 placement:
287 constraints:
288 - node.hostname == KF2-DATA-166
289 depends_on:
290 - metad0
291 - metad1
292 - metad2
293 healthcheck:
294 test: ["CMD", "curl", "-f", "http://192.168.1.166:13000/status"]
295 interval: 30s
296 timeout: 10s
297 retries: 3
298 start_period: 20s
299 ports:
300 - target: 3699
301 published: 3699
302 protocol: tcp
303 mode: host
304 - target: 13000
305 published: 13000
306 protocol: tcp
307 # mode: host
308 - target: 13002
309 published: 13002
310 protocol: tcp
311 mode: host
312 volumes:
313 - logs-graphd:/logs
314 networks:
315 - nebula-net
316
317 graphd2:
318 image: vesoft/nebula-graphd:nightly
319 env_file:
320 - ./nebula.env
321 command:
322 - --meta_server_addrs=192.168.1.166:45500,192.168.1.167:45500,192.168.1.168:45500
323 - --port=3699
324 - --ws_ip=192.168.1.167
325 - --log_dir=/logs
326 - --v=2
327 - --minloglevel=2
328 deploy:
329 replicas: 1
330 restart_policy:
331 condition: on-failure
332 placement:
333 constraints:
334 - node.hostname == KF2-DATA-167
335 depends_on:
336 - metad0
337 - metad1
338 - metad2
339 healthcheck:
340 test: ["CMD", "curl", "-f", "http://192.168.1.167:13001/status"]
341 interval: 30s
342 timeout: 10s
343 retries: 3
344 start_period: 20s
345 ports:
346 - target: 3699
347 published: 3640
348 protocol: tcp
349 mode: host
350 - target: 13000
351 published: 13001
352 protocol: tcp
353 mode: host
354 - target: 13002
355 published: 13003
356 protocol: tcp
357 # mode: host
358 volumes:
359 - logs-graphd2:/logs
360 networks:
361 - nebula-net
362 graphd3:
363 image: vesoft/nebula-graphd:nightly
364 env_file:
365 - ./nebula.env
366 command:
367 - --meta_server_addrs=192.168.1.166:45500,192.168.1.167:45500,192.168.1.168:45500
368 - --port=3699
369 - --ws_ip=192.168.1.168
370 - --log_dir=/logs
371 - --v=0
372 - --minloglevel=2
373 deploy:
374 replicas: 1
375 restart_policy:
376 condition: on-failure
377 placement:
378 constraints:
379 - node.hostname == KF2-DATA-168
380 depends_on:
381 - metad0
382 - metad1
383 - metad2
384 healthcheck:
385 test: ["CMD", "curl", "-f", "http://192.168.1.168:13002/status"]
386 interval: 30s
387 timeout: 10s
388 retries: 3
389 start_period: 20s
390 ports:
391 - target: 3699
392 published: 3641
393 protocol: tcp
394 mode: host
395 - target: 13000
396 published: 13002
397 protocol: tcp
398 # mode: host
399 - target: 13002
400 published: 13004
401 protocol: tcp
402 mode: host
403 volumes:
404 - logs-graphd3:/logs
405 networks:
406 - nebula-net
407 networks:
408 nebula-net:
409 external: true
410 attachable: true
411 name: host
412 volumes:
413 data-metad0:
414 logs-metad0:
415 data-metad1:
416 logs-metad1:
417 data-metad2:
418 logs-metad2:
419 data-storaged0:
420 logs-storaged0:
421 data-storaged1:
422 logs-storaged1:
423 data-storaged2:
424 logs-storaged2:
425 logs-graphd:
426 logs-graphd2:
427 logs-graphd3:
docker-stack.yml
编辑 nebula.env
加入如下内容
1 TZ=UTC
2 USER=root
nebula.env
2.6 启动nebula集群
docker stack deploy nebula -c docker-stack.yml
三、集群负载均衡及高可用配置
Nebula Graph的客户端目前(1.X)没有提供负载均衡的能力,只是随机选一个graphd去连接。所以生产使用的时候要自己做个负载均衡和高可用。
图3.1
将整个部署架构分为三层,数据服务层,负载均衡层及高可用层。如图3.1所示
负载均衡层:对client请求做负载均衡,将请求分发至下方数据服务层
高可用层: 这里实现的是haproxy的高可用,保证负载均衡层的服务从而保证整个集群的正常服务
3.1 负载均衡配置
haproxy使用docker-compose配置。分别编辑以下三个文件
Dockerfile 加入以下内容
1 FROM haproxy:1.7
2 COPY haproxy.cfg /usr/local/etc/haproxy/haproxy.cfg
3 EXPOSE 3640
Dockerfile
docker-compose.yml加入以下内容
1 version: "3.2"
2 services:
3 haproxy:
4 container_name: haproxy
5 build: .
6 volumes:
7 - ./haproxy.cfg:/usr/local/etc/haproxy/haproxy.cfg
8 ports:
9 - 3640:3640
10 restart: always
11 networks:
12 - app_net
13 networks:
14 app_net:
15 external: true
docker-compose.yml
haproxy.cfg加入以下内容
1 global
2 daemon
3 maxconn 30000
4 log 127.0.0.1 local0 info
5 log 127.0.0.1 local1 warning
6
7 defaults
8 log-format %hr\ %ST\ %B\ %Ts
9 log global
10 mode http
11 option http-keep-alive
12 timeout connect 5000ms
13 timeout client 10000ms
14 timeout server 50000ms
15 timeout http-request 20000ms
16
17 # custom your own frontends && backends && listen conf
18 #CUSTOM
19
20 listen graphd-cluster
21 bind *:3640
22 mode tcp
23 maxconn 300
24 balance roundrobin
25 server server1 192.168.1.166:3699 maxconn 300 check
26 server server2 192.168.1.167:3699 maxconn 300 check
27 server server3 192.168.1.168:3699 maxconn 300 check
28
29 listen stats
30 bind *:1080
31 stats refresh 30s
32 stats uri /stats
haproxy.cfg
3.2 启动haproxy
docker-compose up -d
3.2 高可用配置
注:配置keepalive需预先准备好vip (虚拟ip),在以下配置中192.168.1.99便为虚拟ip
在192.168.1.166 、192.168.1.167、192.168.1.168上均做以下配置
- 安装keepalived
apt-get update && apt-get upgrade && apt-get install keepalived -y
- 更改keepalived配置文件/etc/keepalived/keepalived.conf(三台机器中 做如下配置,priority应设置不同值确定优先级)
192.168.1.166机器配置
1 global_defs {
2 router_id lb01 #标识信息,一个名字而已;
3 }
4 vrrp_script chk_haproxy {
5 script "killall -0 haproxy" interval 2
6 }
7 vrrp_instance VI_1 {
8 state MASTER
9 interface ens160
10 virtual_router_id 52
11 priority 999
12 # 设定MASTER与BACKUP负载均衡器之间同步检查的时间间隔,单位是秒
13 advert_int 1
14 # 设置验证类型和密码
15 authentication {
16 # 设置验证类型,主要有PASS和AH两种
17 auth_type PASS
18 # 设置验证密码,在同一个vrrp_instance下,MASTER与BACKUP必须使用相同的密码才能正常通信
19 auth_pass amber1
20 }
21 virtual_ipaddress {
22 # 虚拟IP为192.168.1.99/24;绑定接口为ens160;别名ens169:1,主备相同
23 192.168.1.99/24 dev ens160 label ens160:1
24 }
25 track_script {
26 chk_haproxy
27 }
28 }
keepalived.conf
167机器配置
1 global_defs {
2 router_id lb01 #标识信息,一个名字而已;
3 }
4 vrrp_script chk_haproxy {
5 script "killall -0 haproxy" interval 2
6 }
7 vrrp_instance VI_1 {
8 state BACKUP
9 interface ens160
10 virtual_router_id 52
11 priority 888
12 # 设定MASTER与BACKUP负载均衡器之间同步检查的时间间隔,单位是秒
13 advert_int 1
14 # 设置验证类型和密码
15 authentication {
16 # 设置验证类型,主要有PASS和AH两种
17 auth_type PASS
18 # 设置验证密码,在同一个vrrp_instance下,MASTER与BACKUP必须使用相同的密码才能正常通信
19 auth_pass amber1
20 }
21 virtual_ipaddress {
22 # 虚拟IP为192.168.1.99/24;绑定接口为ens160;别名ens160:1,主备相同
23 192.168.1.99/24 dev ens160 label ens160:1
24 }
25 track_script {
26 chk_haproxy
27 }
28 }
keepalived.conf
168机器配置
1 global_defs {
2 router_id lb01 #标识信息,一个名字而已;
3 }
4 vrrp_script chk_haproxy {
5 script "killall -0 haproxy" interval 2
6 }
7 vrrp_instance VI_1 {
8 state BACKUP
9 interface ens160
10 virtual_router_id 52
11 priority 777
12 # 设定MASTER与BACKUP负载均衡器之间同步检查的时间间隔,单位是秒
13 advert_int 1
14 # 设置验证类型和密码
15 authentication {
16 # 设置验证类型,主要有PASS和AH两种
17 auth_type PASS
18 # 设置验证密码,在同一个vrrp_instance下,MASTER与BACKUP必须使用相同的密码才能正常通信
19 auth_pass amber1
20 }
21 virtual_ipaddress {
22 # 虚拟IP为192.168.1.99/24;绑定接口为ens160;别名ens160:1,主备相同
23 192.168.1.99/24 dev ens160 label ens160:1
24 }
25 track_script {
26 chk_haproxy
27 }
28 }
keepalived.conf
keepalived相关命令
# 启动keepalived
systemctl start keepalived
# 使keepalived开机自启
systemctl enable keeplived
# 重启keepalived
systemctl restart keepalived
四、其他
离线怎么部署?把镜像更改为私有镜像库就成了,有问题欢迎来勾搭啊。
用Docker swarm快速部署Nebula Graph集群的更多相关文章
- 本文介绍如何使用 Docker Swarm 来部署 Nebula Graph 集群,并部署客户端负载均衡和高可用
本文作者系:视野金服工程师 | 吴海胜 首发于 Nebula Graph 论坛:https://discuss.nebula-graph.com.cn/t/topic/1388 一.前言 本文介绍如何 ...
- docker swarm快速部署redis分布式集群
环境准备 四台虚拟机 192.168.2.38(管理节点) 192.168.2.81(工作节点) 192.168.2.100(工作节点) 192.168.2.102(工作节点) 时间同步 每台机器都执 ...
- Docker Swarm和Kubernetes在大规模集群中的性能比较
Contents 这篇文章主要针对Docker Swarm和Kubernetes在大规模部署的条件下的3个问题展开讨论.在大规模部署下,它们的性能如何?它们是否可以被批量操作?需要采取何种措施来支持他 ...
- 使用 Bitnami PostgreSQL Docker 镜像快速设置流复制集群
bitnami-docker-postgresql 仓库 源码:bitnami-docker-postgresql https://github.com/bitnami/bitnami-docker- ...
- 使用docker快速部署一个consul集群
作为一个开发者,有时候需要一个集群环境,之前的做法要么就是使用多个虚拟机,要么就是采用不同的端口来模拟,但是虚拟机比较占内存,而且启动慢,采用不同的端口来模拟,管理起来比较麻烦一些,程序隔离性差一些. ...
- Docker Swarm(十)Portainer 集群可视化管理
前言 搭建好我们的容器编排集群,那我们总不能日常的时候也在命令行进行操作,所以我们需要使用到一些可视化的工具,Docker图形化管理提供了很多工具,有Portainer.Docker UI.Shipy ...
- Harbor快速部署到Kubernetes集群及登录问题解决
Harbor(https://goharbor.io)是一个功能强大的容器镜像管理和服务系统,用于提供专有容器镜像服务.随着云原生架构的广泛使用,原来由VMWare开发的Harbor也加入了云原生基金 ...
- 快速部署一个Kubernetes集群
官方提供的三种部署方式 minikube Minikube是一个工具,可以在本地快速运行一个单点的Kubernetes,仅用于尝试Kubernetes或日常开发的用户使用. 部署地址:https:// ...
- 第3章:快速部署一个Kubernetes集群
kubeadm是官方社区推出的一个用于快速部署kubernetes集群的工具. 这个工具能通过两条指令完成一个kubernetes集群的部署: # 创建一个 Master 节点$ kubeadm in ...
随机推荐
- Biologically Inspired Reinforcement Learning: Reward-Based Decomposition for Multi-goal Environments
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract 我们提出了一种基于情绪的分层强化学习(HRL)算法,用于具有多种奖励来源的环境.该系统的架构受到大脑神经生物学的启发,特 ...
- 第3关-input()函数
第3关-input()函数 一.input()函数 import time print('亲爱的同学:') time.sleep(1) print('我们愉快地通知您,您已获准在霍格沃茨魔法学校就读. ...
- Datanode 怎么与 Namenode 通信?
在分析DataNode时, 因为DataNode上保存的是数据块, 因此DataNode主要是对数据块进行操作. A. DataNode的主要工作流程 客户端和DataNode的通信: 客户端向Dat ...
- MPI组操作
进程组的创建 MPI_Comm_Group int MPI_Comm_group( MPI_Comm comm, MPI_Group *group ); 把相同的通信子进程放到一个组内. #inclu ...
- 3d相册展示
示例代码 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta ...
- VSCode优雅编码
安装eslint 修改eslint配置 rules: { 'no-console': process.env.NODE_ENV === 'production' ? 'error' : 'off', ...
- docker搭建zabbix收集windows计数器性能数据
1 docker服务的安装 1)在线安装docker服务 在线安装可以参考下面的安装步骤 a 安装相关依赖组件 yum install -y yum-utils device-mapper-persi ...
- 【HttpRunner v3.x】笔记—8.运行testcase的几种方式
在之前的demo过程中,已经运行过testcase了,那这篇就也来汇总一下,运行case相关的知识点. 一.运行testcase的几种场景 1. 运行单个case 通常单个case的话我会在编辑器里用 ...
- 程序员你的maven多模块项目如何对外输出为一个构件?
上图为常见的台式机,程序员,你看了有啥启发? 台式机生产线 我的maven代码工程 xxx 显示器 xxx-web 主机 xxx-app 键盘 xxx-domian 鼠标 xxx-infrastrat ...
- 推荐一个IT老鸟肝了2月有余的免费开源WPF企业级开发框架
一个新学WPF的IT老鸟,肝了2个月做了这么一个WPF企业级开发框架,站长clone学习,觉得甚是不错.这是一个使用了Prism搭建的插件式框架,封装了DataGrid的使用,使整个框架子模块简单易学 ...