题目链接(洛谷)

题目大意

给定两个数 \(u\) , \(v\) 。有三种操作:

  1. \(u=u+1(mod\) \(p)\) 。
  2. \(u=u+p−1(mod\) \(p)\) 。
  3. \(u=u^{p−2}(mod\) \(p)\) 。

思路

BFS

状态太多导致队列装不下。

迭代加深

\(TLE\) ,浪费了太多时间在每一层上,没有记忆化且状态很多。

IDA*

不行,无法得出乐观股价函数。

双向BFS

这样会将步数很为两半,状态相较于普通的 \(BFS\) 会少很多。

先来看操作一和操作二,他们的关系是可以互逆的。一个对于原数 \(+1\) ,另一个对于原数 \(-1\) 。

操作三和操作三是互逆的,由费马小定理可知:若 \(p\) 为质数,则 \(a^{p-1}≡1(mod\) \(p)\)。

可得出:\((u^{p-2})^{p-2}≡u^{(p-2)(p-2)}≡u^{(p-1)(p-3)+1}≡(u^{p-1})^{p-3}u≡u(mod\) \(p)\)

那么就分别由开始状态与结束状态来向中间推进。

Code

#include <map>
#include <queue>
#include <cstdio>
#include <iostream>
using namespace std;
struct Status {//队列中保存的状态
int step, number, flag;//分别是:步数,当前状态的数,正向或者反向
Status() {}
Status(int S, int N, int F) {
step = S;
number = N;
flag = F;
}
};
const int MAXN = 1e6 + 5;
queue<Status> q;
map<int, int> real;
bool vis[2][MAXN];//是否访问过
int dis[2][MAXN];//步数
pair<int, int> pre[2][MAXN];//first记录前一个数的哈希值,second记录操作的序号
int u, v, p;
int tot;
int Quick_Pow(int fpx, int fpy) {//快速幂
long long res = 1;
long long x = fpx;
long long y = fpy;
while(y) {
if(y & 1)
res = (res * x) % p;
x = (x * x) % p;
y >>= 1;
}
int ans = res;
return ans;
}
int Get_Hash(int x) {//map映射假哈希
map<int, int>::iterator it = real.find(x);
if(it != real.end())
return (*it).second;
real[x] = ++tot;
return tot;
}
void Print(int x, int y) {//输出路径:记录每个前缀
if(y == -1)
return;
if(!x) {//前半部分倒着输出
if(pre[x][y].first != -1) {
Print(x, pre[x][y].first);
printf("%d ", pre[x][y].second);
}
}
else {//后半部分正着输出
if(pre[x][y].first != -1) {
printf("%d ", pre[x][y].second);
Print(x, pre[x][y].first);
}
}
}
void DoubleBfs() {
int tmp;
q.push(Status(0, u, 0));//初始化两个状态
q.push(Status(0, v, 1));
tmp = Get_Hash(u);
vis[0][tmp] = 1;
pre[0][tmp].first = -1;
tmp = Get_Hash(v);
vis[1][tmp] = 1;
pre[1][tmp].first = -1;
while(!q.empty()) {
Status now = q.front();
q.pop();
int skt = Get_Hash(now.number);
if(vis[!now.flag][skt]) {//碰头了输出并跳出
printf("%d\n", dis[!now.flag][skt] + dis[now.flag][skt]);
if(pre[0][skt].first != -1) {
Print(0, pre[0][skt].first);
printf("%d ", pre[0][skt].second);
}
if(pre[1][skt].first != -1) {
printf("%d ", pre[1][skt].second);
Print(1, pre[1][skt].first);
}
return;
}
Status next = now;
next.step++;
next.number = (next.number + 1) % p;
tmp = Get_Hash(next.number);
if(!vis[now.flag][tmp]) {//没有被访问则访问
vis[now.flag][tmp] = 1;
dis[now.flag][tmp] = next.step;
pre[now.flag][tmp].first = skt;
if(now.flag)
pre[now.flag][tmp].second = 2;//若是倒着的,则该操作为1
else
pre[now.flag][tmp].second = 1;//若是正着的,则该操作为2
q.push(next);
}
next = now;
next.step++;
next.number = (next.number + p - 1) % p;
tmp = Get_Hash(next.number);
if(!vis[now.flag][tmp]) {//同上
vis[now.flag][tmp] = 1;
dis[now.flag][tmp] = next.step;
pre[now.flag][tmp].first = skt;
if(now.flag)
pre[now.flag][tmp].second = 1;
else
pre[now.flag][tmp].second = 2;
q.push(next);
}
next = now;
next.step++;
next.number = Quick_Pow(next.number, p - 2) % p;
tmp = Get_Hash(next.number);
if(!vis[now.flag][tmp]) {//同上
vis[now.flag][tmp] = 1;
dis[now.flag][tmp] = next.step;
pre[now.flag][tmp].first = skt;
pre[now.flag][tmp].second = 3;//自己的逆操作就是自己
q.push(next);
}
}
}
int main() {
scanf("%d %d %d", &u, &v, &p);
DoubleBfs();
return 0;
}

CF995E Number Clicker (双向BFS)的更多相关文章

  1. CF995E Number Clicker 解题报告

    CF995E Number Clicker 题目描述 Allen is playing Number Clicker on his phone. He starts with an integer u ...

  2. CF995E Number Clicker

    题目分析 首先,我们必须明白,操作都是互逆的,\(1,2\)之间是可以互相转化的,这是不需证明的,对于操作\(3\),实际上,是求当前数的逆元,我们知道,逆元就是求当前数在模另一个数下的倒数,那么,逆 ...

  3. Number Clicker CodeForces - 995E(双向bfs)

    双向bfs  注意数很大  用map来存 然后各种难受....

  4. CodeForces - 995E Number Clicker (双向BFS)

    题意:给出u,v,p,对u可以进行三种变化: 1.u=(u+1)%p ; 2.u = (u+p-1)%p;  3.u = 模p下的逆元.问通过几步可以使u变成v,并且给出每一步的操作. 分析:朴素的b ...

  5. HDU 3085 Nightmare Ⅱ (双向BFS)

    Nightmare Ⅱ Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  6. Hdu1401-Solitaire(双向bfs)

    Solitaire is a game played on a chessboard 8x8. The rows and columns of the chessboard are numbered ...

  7. UVA1601-The Morning after Halloween(双向BFS)

    Problem UVA1601-The Morning after Halloween Accept: 289 Submit: 3136 Time Limit: 12000 mSec  Problem ...

  8. Eight (HDU - 1043|POJ - 1077)(A* | 双向bfs+康拓展开)

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've see ...

  9. HDU3085(双向BFS+曼哈顿距离)题解

    Nightmare Ⅱ Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

随机推荐

  1. net core 踩坑记录

    静态文件要放到wwwroot目录中才能访问 linux服务器部署运行报错 System.Net.Http.HttpRequestException: The SSL connection could ...

  2. vs2019激活码

    Visual Studio 2019 Enterprise BF8Y8-GN2QH-T84XB-QVY3B-RC4DF Visual Studio 2019 Professional NYWVH-HT ...

  3. Kubernets二进制安装(14)之flannel之SNAT规则优化

    flannel之SNAT规则优化的目的是由于在K8S中的容器内,访问不同宿主机中的容器的资源的时候,日志文件会记录为宿主机的IP地址,而不是记录为容器本身自己的IP地址,建议在不同的宿主机上的容器互访 ...

  4. Kubernets二进制安装(5)之私有仓库harbor搭建

    在IP地址为192.168.80.50,机器名为mfyxw50上搭建私有仓库harbor harbor下载地址: harbor下载连接地址:https://github.com/goharbor/ha ...

  5. VS中使用TreeView的Checked属性问题

    VS中使用TreeView,当需要用到Checked属性,并需要同步子节点和父节点的Checked属性时,若使用AfterCheck事件会导致死循环,这里我使用的是NodeMouseClick事件.代 ...

  6. 让你像黑客一样写代码(not really)

    让你像黑客一样写代码(not really) http://poznan.tvp.pl 这是一个波兰的视频网站. poznan 波兹南(波兰城市 视屏链接 http://video.sina.com. ...

  7. 最新 Vue 源码学习笔记

    最新 Vue 源码学习笔记 v2.x.x & v3.x.x 框架架构 核心算法 设计模式 编码风格 项目结构 为什么出现 解决了什么问题 有哪些应用场景 v2.x.x & v3.x.x ...

  8. ECMAScript 7 (ES 2016 /ES7 ) Ecma-262 7Edition

    Standard ECMA-262 ECMAScript 2016 Language Specification 7th edition (June 2016) http://www.ecma-int ...

  9. 微信小程序 UI 组件库

    微信小程序 UI 组件库 Vant Weapp 需要注意的是 package.json 和 node_modules 必须在 miniprogram 目录下 $ yarn add @vant/weap ...

  10. Paint Tool SAI

    Paint Tool SAI PC 绘画工具 https://en.wikipedia.org/wiki/Paint_Tool_SAI refs https://www.systemax.jp/en/ ...