HDU6331 Problem M. Walking Plan【Floyd + 矩阵 + 分块】
HDU6331 Problem M. Walking Plan
题意:
给出一张有\(N\)个点的有向图,有\(q\)次询问,每次询问从\(s\)到\(t\)且最少走\(k\)条边的最短路径是多少
\(N\le 50, q\le 10^5, k\le 10^4\)
题解:
如果暴力预处理的话复杂度是\(kN^3\)也就是\(1.25\times 10^9\),空间上肯定开不起
第二个想法就是对邻接矩阵进行矩阵快速幂,对于每次询问都要跑一次,复杂度是\(qN^3\log k\)复杂度更高了
考虑分摊复杂度,\(k\)最多是\(10^4\),那么可以每\(\lfloor\sqrt{k}\rfloor\)的长度跑一次最短路,跑\(\lceil\frac{k}{\lfloor\sqrt{k}\rfloor}\rceil\)次,最后计算的时候询问\(k\)可以把\(k\)拆成\(l\times \sqrt{k} + r\),然后用两个对应的最短路矩阵再找一次最短路即可,要注意的是,最短路不一定是单调的,也就是说可能走更多的边可以得到更短的路径,但是多走的边不会超过\(N\),因为两点之间的最短路长度是不会超过顶点数的,所以预处理时需要计算的是\(u\)到\(v\)走了至少\(k\)步的最短路,最后的复杂度是\(\sqrt{k}N^3+qN\)大概是\(2\times 10^7\)
view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 55;
const int INF = 0x3f3f3f3f;
int n, m;
struct Matrix{
int A[MAXN][MAXN];
Matrix(){ for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) A[i][j] = INF; }
void clear(){ for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) A[i][j] = INF; }
Matrix operator * (const Matrix &rhs) const{
Matrix ret;
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
ret.A[i][j] = min(ret.A[i][j],A[i][k] + rhs.A[k][j]);
return ret;
}
};
Matrix dis1[155], dis100[111];
void solve(){
scanf("%d %d",&n,&m);
dis1[1].clear();
for(int i = 1; i <= m; i++){
int u, v, w;
scanf("%d %d %d",&u,&v,&w);
dis1[1].A[u][v] = min(dis1[1].A[u][v],w);
}
for(int i = 2; i <= 150; i++) dis1[i] = dis1[i-1] * dis1[1];
dis100[1] = dis1[100];
for(int i = 2; i <= 100; i++) dis100[i] = dis100[i-1] * dis100[1];
for(int i = 149; i >= 1; i--)
for(int u = 1; u <= n; u++)
for(int v = 1; v <= n; v++)
dis1[i].A[u][v] = min(dis1[i].A[u][v],dis1[i+1].A[u][v]);
int q;
scanf("%d",&q);
while(q--){
int s, t ,k;
scanf("%d %d %d",&s,&t,&k);
int ret = INF;
if(k<=100) ret = dis1[k].A[s][t];
else{
int l = (k-1) / 100, r = k - l * 100;
for(int i = 1; i <= n; i++) ret = min(ret,dis100[l].A[s][i] + dis1[r].A[i][t]);
}
printf("%d\n",ret==INF?-1:ret);
}
}
int main(){
int tt;
for(scanf("%d",&tt); tt; tt--) solve();
return 0;
}
HDU6331 Problem M. Walking Plan【Floyd + 矩阵 + 分块】的更多相关文章
- hdu6331 Problem M. Walking Plan
传送门 题目大意 给你一个n点m条边的有向图,q次询问,给定s,t,k,求由s到t至少经过k条边的最短路. 分析 我们设dp[i][j][k]为从i到j至少经过k条边的最短路,sp[i][j]意为从i ...
- 2018HDU多校训练-3-Problem M. Walking Plan
链接:http://acm.hdu.edu.cn/showproblem.php?pid=6331 Walking Plan Problem Description There are n inte ...
- HDU6331Problem M. Walking Plan
传送门 分块floyd $f[i][j][k]$表示从i走k步到j的最短路 $g[i][j][k]$表示从i走k*100步到j的最短路 $h[i][j][k]$表示从i至少走k步到j的最短路 询问从x ...
- 2018 杭电多校3 - M.Walking Plan
题目链接 Problem Description There are $$$n$$$ intersections in Bytetown, connected with $$$m$$$ one way ...
- poj 3613 经过k条边最短路 floyd+矩阵快速幂
http://poj.org/problem?id=3613 s->t上经过k条边的最短路 先把1000范围的点离散化到200中,然后使用最短路可以使用floyd,由于求的是经过k条路的最短路, ...
- 【floyd+矩阵乘法】POJ 3613 Cow Relays
Description For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a rel ...
- 【做题】HDU6331 Walking Plan——矩阵&分块
题意:给出一个有\(n\)个结点的有向图,边有边权.有\(q\)组询问,每次给出\(s,t,k\),问从\(s\)到\(t\)至少经过\(k\)条边的最短路. \(n \leq 50, \, q \l ...
- 2018多校第三场 hdu6331 M :Walking Plan
题目链接 hdu6331 自我吐槽,这场多校大失败,开局签到因输入输出格式写错,wa了3发.队友C题wa了1个小时,还硬说自己写的没错,结果我随便造了个小数据,他都没跑对.然后跑对了后又进入了无限的卡 ...
- hdu6331 Walking Plan
题意: sol: 考虑floyed 直接暴力做的话复杂度是kn^3会炸. 考虑一个比较神仙的分块做法. 注意到我们是可以直接求单独某个k的矩阵,使用矩阵快速幂即可(取min的矩阵乘法). 单独求一次的 ...
随机推荐
- idea thymeleaf页面变量报错解决
IDEA在thymeleaf页面编写变量,如${user.id}会出现红色波浪下划线错误,提示Validates unresolved references and invalid expressio ...
- IntelliJ IDEA启动界面的秘密:当编程遇到艺术
细心的同学会发现Intellij IDEA每次发版本的时候都会有不同的启动界面背景,都很比较抽象的艺术图像. JetBrains的其它产品也有自己独特的设计. 但是这背后是怎么实现的.有什么寓意却很少 ...
- nginx启动失败(bind() to 0.0.0.0:80 failed (10013: An attempt was made to access a socket...permissions)
nginx启动失败 nginx启动失败(bind() to 0.0.0.0:80 failed (10013: An attempt was made to access a socket in a ...
- grep和egrep
grep nobody /etc/passwd 显示/etc/passwd中带有nobody字样的行,区分大小写 grep -i nobody /etc/passwd 现实/etc/passwd中 ...
- 【RAC】安装rac的时候。报错checking for oracle home incompatibilities failed
背景:由于oracle安装的时候中途出现了问题,解决过后,发现报错了 图形化安装的时候,有这个问题出现 解决办法: 删除安装过的所有缓存,和文件即可 1.删除ORACLE_BASE下的所有文件 2.删 ...
- 使用yaml来实现ingress-nginx
创建一个ingress-nginx [root@k8s-master ingress]# cat ingress-nginx.yaml apiVersion: v1 kind: Namespace m ...
- 通过logmnr找到被修改前的存储过程
1.找到存储过程被修改时的归档日志 SELECT NAME FROM V$ARCHIVED_LOG WHERE FIRST_TIME BETWEEN TO_DATE('20191118080000', ...
- css全站变灰
2020年4月4日全国哀悼日这一天,我发现不少网址都变灰了,我第一想法就是怎么做到的?不可能换素材整个网址重做一遍吧?后面发现是用的其实是css的filter滤镜: grayscale可以将图像转化为 ...
- 【转】自定义ALV控件的工具条按钮
1 CLASS lcl_event_receiver DEFINITION DEFERRED. 2 3 DATA: itab TYPE TABLE OF spfli, 4 wa TYPE spfli. ...
- Centos 安装postgreSQL9.4.3
rpm -ivh http://download.postgresql.org/pub/repos/yum/9.4/redhat/rhel-7.2-x86_64/pgdg-centos94-9.4-3 ...