当我们在绘制散点图的时候,可能会遇到点特别多的情况,这时点与点之间过度重合,影响我们对图的认知。为了更好地反映特征,我们可以加上点的密度信息,比如在原来散点所在的位置将密度用热图的形式呈现出来,再比如在主图的边缘加上直方图等来反映密度。具体实现如下:

先导入数据,除了ggplot2,还有一个ggExtra包

library(ggplot2)
library(tidyverse)
library(ggExtra)
df=read.table("20191126P31_HTODemux_CiteFuse.txt",header = T,row.names = 1,sep = "\t",stringsAsFactors = F) #数据格式如下
# head(df)
# HTODemux tag2 tag3 CiteFuse
# AAACCCAAGTCATACC doublet 6323 1582 doublet
# AAACCCAAGTTGTCGT tag3 17 3760 tag3
# AAACCCACATGAGAAT tag3 32 2614 tag3
# AAACCCAGTAACTGCT tag3 30 699 tag3
# AAACCCAGTACCAGAG tag2 4425 60 tag2
# AAACCCAGTACGATGG tag3 40 8043 tag3 #每一组的占比,可以放在图的右上角
group_labels=paste("tag2: 0.3844",
"tag3: 0.5000",
"doublet: 0.0844",
"negative: 0.0312",sep = "\n")

原图的绘制

p=df%>%ggplot(aes(x=log(tag2),y=log(tag3),color=CiteFuse))+geom_point(size=2)+
annotate("text",x=11,y=11,label=group_labels,color="black",size=6)+ #注释类型为“文本”类型,位置在x=11,y=11的位置,这张图横纵轴大约为12,因此(11,11)大概在右上角的地方
scale_x_continuous("tag2_UMI_ln",breaks = seq(0,12,2))+
scale_y_continuous("tag3_UMI_ln",breaks = seq(0,12,2))+
theme_bw()+
theme(
axis.text.x.bottom = element_text(size = 16), #下面两行调整坐标轴刻度的文本大小
axis.text.y.left = element_text(size = 16),
axis.title.x = element_text(size = 18), #下面两行调整坐标轴title的文本大小
axis.title.y = element_text(size = 18),
legend.text = element_text(size = 18), #下面两行调整图例文本大小
legend.title = element_text(size = 18),
legend.position = c(0.9,0.1), #图例的位置,(0.9,0.1)是一个相对坐标,假设横纵轴长为1
legend.key = element_blank(), #下面两行将图例的底层去掉,因为是白色的,所以去不去看不出来,只有在AI编辑图片的时候才能看到
legend.background = element_blank(),
panel.grid.major = element_blank(), #下面两行将图中ggplot2默认的横线竖线去掉
panel.grid.minor = element_blank()
)
pdf("raw.pdf",width = 10, height = 10)
p
dev.off()



密度图可以用smoothScatter()绘制

pdf("smoothScatter.pdf",width = 7, height = 7.5)
smoothScatter(log(df$tag2),log(df$tag3),xlab="tag2_UMI_ln",ylab="tag3_UMI_ln")
dev.off()



这种密度图还是比较常用的,不过在此处与原图相比,失去了分组信息,有点顾此失彼。我们看一下另一种方案,主要用到的就是ggExtra包里面的ggMarginal()函数。

p1=ggMarginal(p, type="histogram", fill = "lightblue", xparams = list(bins=40), yparams = list(bins=40))
pdf("histogram.pdf",width = 10, height = 10)
p1
dev.off()

xparams和yparams分别用来调整两个方向的参数,这里我只调整了bin的数量,即每一个方向有40个柱形。

p2=ggMarginal(p, type="density", fill="lightgrey", color="lightgrey")
pdf("density.pdf",width = 10, height = 10)
p2
dev.off()

fill和color分别调整填充颜色和边的颜色

p3=ggMarginal(p, type="boxplot", size=7, xparams = list(color="black",size=1), yparams = list(color="grey",size=1))
pdf("boxplot.pdf",width = 10, height = 10)
p3
dev.off()

size=7表示主图长/宽是附图的7倍,list()里面的size表示箱型图边的宽窄

p4=ggMarginal(p, type="densigram",fill="lightblue",color="purple")
pdf("densigram.pdf",width = 10, height = 10)
p4
dev.off()

最后一个图是直方图和密度图的组合


针对我给出的原图,在主图的边缘加密度图看上去是不错的选择,感兴趣的小伙伴可以试试看~

因水平有限,有错误的地方,欢迎批评指正!

R绘图(1): 在散点图边缘加上直方图/密度图/箱型图的更多相关文章

  1. 06. Matplotlib 2 |折线图| 柱状图| 堆叠图| 面积图| 填图| 饼图| 直方图| 散点图| 极坐标| 图箱型图

    1.基本图表绘制 plt.plot() 图表类别:线形图.柱状图.密度图,以横纵坐标两个维度为主同时可延展出多种其他图表样式 plt.plot(kind='line', ax=None, figsiz ...

  2. matplotlib柱状图、面积图、直方图、散点图、极坐标图、箱型图

    一.柱状图 1.通过obj.plot() 柱状图用bar表示,可通过obj.plot(kind='bar')或者obj.plot.bar()生成:在柱状图中添加参数stacked=True,会形成堆叠 ...

  3. Python图表数据可视化Seaborn:2. 分类数据可视化-分类散点图|分布图(箱型图|小提琴图|LV图表)|统计图(柱状图|折线图)

    1. 分类数据可视化 - 分类散点图 stripplot( ) / swarmplot( ) sns.stripplot(x="day",y="total_bill&qu ...

  4. R语言-箱型图&热力图

    1.箱型图 boxplot()函数 > metals<-read.csv("metals.csv",header=TRUE) #读取文件和列名 > boxplot ...

  5. seaborn分类数据可视化:散点图|箱型图|小提琴图|lv图|柱状图|折线图

    一.散点图stripplot( ) 与swarmplot() 1.分类散点图stripplot( ) 用法stripplot(x=None, y=None, hue=None, data=None, ...

  6. R & ggplot2 & Excel绘图(直方图/经验分布图/QQ图/茎叶图/箱线图)实例

    持续更新~ 散点图 条形图 文氏图 饼图 盒型图 频率直方图 热图 PCA图 3D图 火山图 分面图 分面制作小多组图 地图 练习数据: year count china Ame jap '12 2. ...

  7. R画散点图、线型图、箱型图、直方图基本知识

    1.导入数据 2.散点图 plot(iris[,1]~iris[,4],xlab='Length',ylab='Width',col='red',main='Length VS Width')

  8. R绘图(7): 把散点图的点换成扇形

    前几天分析了一批单细胞TCR的数据,需要画这样一个图: 行是不同的样本,列是不同的T细胞类型,每一个位置点的大小表示T细胞的数目多少,并且还需要根据T细胞所属的克隆型类型涂色.这个图用来描述TCR是我 ...

  9. 利用R求分位数及画出箱型图

    1)数据集 data<-c(75.0,64.0,47.4,66.9,62.2,62.2,58.7,63.5,66.6,64.0,57.0,69.0,56.9,50.0,72.0) 默认是四分位: ...

随机推荐

  1. OpenCV阈值处理函数threshold处理32位彩色图像的案例

    ☞ ░ 前往老猿Python博文目录 ░ 一.概述 openCV图像的阈值处理又称为二值化,之所以称为二值化,是它可以将一幅图转换为感兴趣的部分(前景)和不感兴趣的部分(背景).转换时,通常将某个值( ...

  2. PyQt(Python+Qt)学习随笔:QDateTimeEdit日期时间编辑部件

    专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 老猿学5G博文目录 Designer输入部件中,Date/Time E ...

  3. 第二十八章、containers容器类部件QStackedWidget堆叠窗口部件详解

    老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 一.概述 StackedWidget堆叠窗口部件为一系列窗口部件的堆叠,对应类为QStackedWi ...

  4. 认识css常见的hack

    一.认识css hack CSS Hack只要是来解决浏览器局部的兼容性问题,主要是因为每个浏览器对css的解析各不相同,导致输出到页面的效果的差异: 二.css hack的三种常见形式:css属性h ...

  5. ucore操作系统学习(六) ucore lab6线程调度器

    1. ucore lab6介绍 ucore在lab5中实现了较为完整的进程/线程机制,能够创建和管理位于内核态或用户态的多个线程,让不同的线程通过上下文切换并发的执行,最大化利用CPU硬件资源.uco ...

  6. POJ1422

    题目大意: 一个有向无环图,求最小路径覆盖 板子题... 把每个点拆成\(x\)和\(x^{'}\) \((u,v)\)有一条边则\(u\)向\(v^{'}\)连一条边,然后跑最大匹配,最小路径覆盖= ...

  7. CSP-S2020 浙江 游记

    2020.10.9 今天是 \(2020\) 年 \(10\) 月 \(9\) 日,距离初赛还有两天(算两天吗,完整的应该只有一天多了). 原本对于比赛还是没什么感觉的,每天做做题,水水文章,感觉时间 ...

  8. 九、git学习之——git基本命令全总结

    初始化一个Git仓库,使用git init命令. 添加文件到Git仓库,分两步: git add <file>,注意,可反复多次使用,添加多个文件: 使用命令git commit,完成. ...

  9. C++笔试题续

    第一部分:C++与C语言的差异(1-18)1.C 和 C++ 中 struct 有什么区别? Protection行为 能否定义函数C 无 否,但可以有函数指针C++ 有 可以,默认是public2. ...

  10. 学习笔记: mysql增删改查基础语句

    mysql基础入门语句 增: INSERT INTO 表名(字段1, 2, 3) VALUES('值1', '2', '3') 删: DELETE FROM 表明 WHERE 删除条件 不提供更新条件 ...