Abstract

紧耦合lidar inertial里程计, 用smoothing和mapping.

1. Introduction

紧耦合lidar-inertial里程计.

  • 紧耦合的lidar inertial里程计框架

2. Related work

一般都是用ICP或者是GICP.

在LOAM[1], IMU被引入来de-skew lidar scan, 然后给移动一个先验做scan-匹配.

在[15], 预积分IMU测量被用来 de-skew 点云.

一个robocentric lidar-inertial 状态估计器, R-LINS[16] , 用error-state KF.


LIOM只能 0.6 倍实时

3. LiDAR Inertial Odometry via SAM

A. System Overview

状态是:

\[\mathbf{x}=\left[\mathbf{R}^{\mathbf{T}}, \mathbf{p}^{\mathbf{T}}, \mathbf{v}^{\mathbf{T}}, \mathbf{b}^{\mathbf{T}}\right]^{\mathbf{T}}
\]

B. IMU Preintegration Factor

角速度, 加速度的测量:

\[\begin{array}{l}
\hat{\boldsymbol{\omega}}_{t}=\boldsymbol{\omega}_{t}+\mathbf{b}_{t}^{\boldsymbol{\omega}}+\mathbf{n}_{t}^{\boldsymbol{\omega}} \\
\hat{\mathbf{a}}_{t}=\mathbf{R}_{t}^{\mathbf{B W}}\left(\mathbf{a}_{t}-\mathbf{g}\right)+\mathbf{b}_{t}^{\mathbf{a}}+\mathbf{n}_{t}^{\mathbf{a}},
\end{array}
\]

这里 \(\hat{\omega}_t\) 和 \(\hat{a}_t\) 是 raw 测量在 \(B\) 系.

速度, 位置和旋转在 \(t+\Delta t\)时刻如下:

\[\begin{aligned}
\mathbf{v}_{t+\Delta t}=\mathbf{v}_{t}+\mathbf{g} \Delta t+\mathbf{R}_{t}\left(\hat{\mathbf{a}}_{t}-\mathbf{b}_{t}^{\mathbf{a}}-\mathbf{n}_{t}^{\mathbf{a}}\right) \Delta t \\
\mathbf{p}_{t+\Delta t}=\mathbf{p}_{t}+\mathbf{v}_{t} \Delta t+\frac{1}{2} \mathbf{g} \Delta t^{2} \\
&+\frac{1}{2} \mathbf{R}_{t}\left(\hat{\mathbf{a}}_{t}-\mathbf{b}_{t}^{\mathbf{a}}-\mathbf{n}_{t}^{\mathbf{a}}\right) \Delta t^{2} \\
\mathbf{R}_{t+\Delta t}=\mathbf{R}_{t} \exp \left(\left(\hat{\boldsymbol{\omega}}_{t}-\mathbf{b}_{t}^{\omega}-\mathbf{n}_{t}^{\omega}\right) \Delta t\right)
\end{aligned}
\]

这里 \(R_t = R_t^{WB} = R_t^{{BW}^T}\). 这里我们假设 角速度 和 加速度 的\(B\) 保持不变.

C. LiDAR Odometry Factor

当一个新的scan到达时, 我们先做特征提取. Edge / planar 特征被提取来估计局部点的roughness. 有大的 roughness值的实被分类为edge, 值小的就是planar特征.

1. Sub-keyframes for voxel map

2. Scan-matching

3. Relative transform

edge点和平面点对应如下:

\[\begin{array}{r}
\mathbf{d}_{e_{k}}=\frac{\left|\left(\mathbf{p}_{i+1, k}^{e}-\mathbf{p}_{i, u}^{e}\right) \times\left(\mathbf{p}_{i+1, k}^{e}-\mathbf{p}_{i, v}^{e}\right)\right|}{\left|\mathbf{p}_{i, u}^{e}-\mathbf{p}_{i, v}^{e}\right|} \\
\mathbf{d}_{p_{k}}=\frac{\left(\mathbf{p}_{i, u}^{p}-\mathbf{p}_{i, v}^{p}\right) \times\left(\mathbf{p}_{i, u}^{p}-\mathbf{p}_{i, w}^{p}\right) \mid}{\left|\left(\mathbf{p}_{i, u}^{p}-\mathbf{p}_{i, v}^{p}\right) \times\left(\mathbf{p}_{i, u}^{p}-\mathbf{p}_{i, w}^{p}\right)\right|}
\end{array}
\]

D. GPS Factor

当收到GPS测量的时候, 我会先转换到局部笛卡尔坐标系.

一般我们只有在估计的位置协方差大于接受的GPS位置协方差的时候才加入 GPS factor.

E. Loop Closure Factor

...

4. Experiments

我们比较了LIO-SAM, LOAM和LIOM. LIO-SAM和LOAM是专注在实时的输出, 而LIOM是有无限的时间处理的.

A. Rotation Dataset

遇到的最大的旋转速度是 133.7°/s.

B. Walking Dataset

LIOM只跑了0.56x的实时.

C. Campus Dataset

D. Park Dataset

...

E. Amsterdam Dataset

....

F. Benchmarking Results

...

5. Conclusions and Discussion

没啥.

论文阅读LR LIO-SAM的更多相关文章

  1. 论文阅读 | FoveaBox: Beyond Anchor-based Object Detector

    论文阅读——FoveaBox: Beyond Anchor-based Object Detector 概述 这是一篇ArXiv 2019的文章,作者提出了一种新的anchor-free的目标检测框架 ...

  2. [论文阅读]阿里DIN深度兴趣网络之总体解读

    [论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...

  3. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

  4. BITED数学建模七日谈之三:怎样进行论文阅读

    前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进 ...

  5. 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  6. 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  7. Deep Reinforcement Learning for Dialogue Generation 论文阅读

    本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...

  8. 论文阅读笔记 Word Embeddings A Survey

    论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...

  9. 论文阅读笔记六:FCN:Fully Convolutional Networks for Semantic Segmentation(CVPR2015)

    今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn ...

随机推荐

  1. 创建topic

    sh kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic ...

  2. TkMybatis 是什么?

    一.TkMybatis Tkmybatis 是基于 Mybatis 框架开发的一个工具,通过调用它提供的方法实现对单表的数据操作,不需要写任何 sql 语句,这极大地提高了项目开发效率. 二.怎么用? ...

  3. 使用Docker快速部署各类服务

    使用Docker快速部署各类服务 一键安装Docker #Centos环境 wget -O- https://gitee.com/iubest/dinstall/raw/master/install. ...

  4. ccpc赛前记

    距离ccpc比赛还不到一个小时了,有些紧张又有些兴奋 作为留学选手参加国内的比赛感觉好像很奇怪?谁能想到一个疫情会让我拿ccpc结束自己的acm生涯(也许,谁知道呢) cf上蓝了 该准备gre了,目标 ...

  5. nodejs事件和事件循环简介

    目录 简介 事件 事件循环 事件循环的阻塞 事件循环举例 栈和消息队列 作业队列和promise process.nextTick() setImmediate() setInterval() 简介 ...

  6. Python中高级知识(非专题部分)学习随笔

    Python学习随笔:使用xlwings读取和操作Execl文件 Python学习随笔:使用xlwings新建Execl文件和sheet的方法 博客地址:https://blog.csdn.net/L ...

  7. sqlite 数据库与mysql 数据库使用区别记录

    遇到了就记点儿. 1.sqlite 中,设置外键关联,没啥用.只有mysql 中可用.

  8. 从Excel获取整列内容进行批量扫描

    实习工作原因,需要测试excel表里面ip地址是否存在漏洞,扫了一眼,呕,四五百个IP,光是挨个进行访问,都是一个浩大的工程,所以准备开始摸鱼认真工作 思路是:excel按列提取->将IP按行存 ...

  9. tensorflow 指定版本安装

    首先,建议在anaconda中创建虚拟环境,教程已写,参考上一篇 下载之前建议设置pip清华源(用以提速,可百度) 设置下载源 pip config set global.index-url http ...

  10. git——同步本地文件到github上

    参考教程: 1.https://blog.csdn.net/weixin_37769855/article/details/99439904 2.https://www.liaoxuefeng.com ...