Codeforce 999 D. Equalize the Remainders 解析(思維)

今天我們來看看CF999D

題目連結

題目

略,請直接看原題

前言

感覺要搞個類似\(stack\)的東西來儲存下一個沒滿的\(\mod m\)是哪一個才能避免\(O(m^2)\)的複雜度,沒想到反過來想,儲存前一個滿出來的是什麼就可以了。

想法

首先可能會想到,先把每個\(mod\)值都儲存到一個\(vector<int> as[\_n]\)裡,然後從\(mod=0\)開始一直到\(mod=m-1\),如果當前\(mod\)的數字太多,那就找最近的下一個\(mod\)還沒滿的值填補上去。然而這樣的複雜度要\(O(m^2)\)。

我一開始是想說看怎麼樣能利用類似\(stack\)的結構,去\(O(1)\)找到對於某個\(mod=i\)來說的下一個還沒滿的\(mod\)值,但是其實如果反過來想,每次如果有多出來的\(mod\)值,就先\(push\_back\)到一個\(vector\)裡,那麼繼續遍歷\(i=0\sim m-1\),當發現一個還沒滿的\(mod\)值時,\(vector\)末端的元素一定是靠當前\(i\)最近的。

然而會發現當前未滿的\(mod=i\)有可能需要後面的\(mod>i\)來填補,於是我們遍歷\(i\)時不要只到\(m-1\),而是讓\(i=0\sim 2m-1\),如此一來問題就解決了。

程式碼:

const int _n=2e5+10;
ll t,tt,n,m,mm,k,ii,a[_n],cnt;
VI as[_n],free;
main(void) {ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>m;mm=m*2,k=n/m;rep(i,0,n){cin>>a[i];as[a[i]%m].pb(i);}
rep(i,0,mm){
ii=i%m;
if(SZ(as[ii])>k){
t=SZ(as[ii])-k;
rep(j,0,t)free.pb(as[ii][j]);
}
if(SZ(as[ii])<k){
t=min(SZ(free),k-SZ(as[ii]));
rep(j,SZ(free)-t,SZ(free)){
tt=a[free[j]]%m;if(tt>ii)tt-=m;
a[free[j]]+=ii-tt,cnt+=ii-tt;
}free.erase(free.end()-t,free.end());
}
}
cout<<cnt<<'\n';
rep(i,0,n)cout<<a[i]<<' '; cout<<'\n';
return 0;
}

\(free\)這個\(vector\)名稱已經存在了,需要\(\#define\ free\ [隨便一個字串]\)

標頭、模板請點Submission看

Submission

D. Equalize the Remainders 解析(思維)的更多相关文章

  1. A. Arena of Greed 解析(思維)

    Codeforce 1425 A. Arena of Greed 解析(思維) 今天我們來看看CF1425A 題目連結 題目 略,請直接看原題. 前言 明明是難度1400的題目,但總感覺不是很好寫阿, ...

  2. E. Almost Regular Bracket Sequence 解析(思維)

    Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...

  3. C2. Power Transmission (Hard Edition) 解析(思維、幾何)

    Codeforce 1163 C2. Power Transmission (Hard Edition) 解析(思維.幾何) 今天我們來看看CF1163C2 題目連結 題目 給一堆點,每兩個點會造成一 ...

  4. F. Moving Points 解析(思維、離散化、BIT、前綴和)

    Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...

  5. B. Two Arrays 解析(思維)

    Codeforce 1417 B. Two Arrays 解析(思維) 今天我們來看看CF1417B 題目連結 題目 略,請直接看原題. 前言 a @copyright petjelinux 版權所有 ...

  6. C. k-Amazing Numbers 解析(思維)

    Codeforce 1417 C. k-Amazing Numbers 解析(思維) 今天我們來看看CF1417C 題目連結 題目 略,請直接看原題. 前言 我實作好慢... @copyright p ...

  7. D. Road to Post Office 解析(思維)

    Codeforce 702 D. Road to Post Office 解析(思維) 今天我們來看看CF702D 題目連結 題目 略,請直接看原題. 前言 原本想說會不會也是要列式子解或者二分搜,沒 ...

  8. C. Bank Hacking 解析(思維)

    Codeforce 796 C. Bank Hacking 解析(思維) 今天我們來看看CF796C 題目連結 題目 略,請直接看原題. 前言 @copyright petjelinux 版權所有 觀 ...

  9. B. Kay and Snowflake 解析(思維、DFS、DP、重心)

    Codeforce 685 B. Kay and Snowflake 解析(思維.DFS.DP.重心) 今天我們來看看CF685B 題目連結 題目 給你一棵樹,要求你求出每棵子樹的重心. 前言 完全不 ...

随机推荐

  1. python中浅拷贝和深拷贝的区别

    浅拷贝 可变类型浅拷贝copy函数就是浅拷贝,只对可变类型的第一层对象进行拷贝,对拷贝的对象开辟新的内存空间进行存储,不会拷贝对象内部的子对象可变类型:a = [1, 2, 3] b = [11, 2 ...

  2. 日志分析平台ELK之日志收集器logstash常用插件配置

    前文我们了解了logstash的工作流程以及基本的收集日志相关配置,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/13761906.html:今天我们来了解下l ...

  3. C/C++ 条件编译

    条件编译就是指有条件的编译,即根据条件去编译代码,在编译阶段时就对代码做出取舍,有的编译,有的不编译,这样比写成一个个判断函数更有效率,比如工程代码大部分的地方都类似,只有个别语句因为使用的硬件版本不 ...

  4. 【题解】CF1375D Replace by MEX

    \(\color{purple}{Link}\) \(\text{Solution:}\) 观察到题目要求操作次数不超过\(2n,\)且不必最小化操作次数,所以一定是构造题. 考虑将序列转化为\([0 ...

  5. 【MySQL Errors】Table 'xxx' is marked as crashed and should be repaired 的解决方案

    现象描述 访问 Zabbix Web,出现如下错误提示: • Error in query [SELECT * FROM history_uint h WHERE h.itemid='25067' O ...

  6. Docker笔记1:Docker 的介绍

    目  录 1.Docker 简介 2.Docker 特性 3.Docker 应用场景 4.Docker 优点 1.Docker 简介     Docker 提供了一个可以运行你的应用程序的封套(env ...

  7. linux 已放弃(吐核) (core dumped) 问题分析

    在运行自己写的 C 多线程程序是,出现:已放弃(吐核)  问题. 出现这种问题一般是下面这几种情况: 1.内存越界 2.使用的非线程安全的函数 3.全局数据未加锁保护 4.非法指针 5.堆栈溢出 也就 ...

  8. dubbo使用问题

    新入职此公司, 发现公司使用的框架原来是传说中的分布式的(原谅我以前在传统公司工作,并远离浪潮久矣), 使用过程中发现各服务之间使用 dubbo 进行通信. 特地总结下遇见的坑,为以后总结经验.   ...

  9. Cesium资料

    CesiumLab论坛:https://github.com/cesiumlab/cesium-lab-forum/issues简书上的Cesium实验室文集:https://www.jianshu. ...

  10. 2014年 实验二 B2C网上购物

    实验二 B2C网上购物 [实验目的] ⑴.熟悉虚拟银行和网上支付的应用 ⑵.熟悉并掌握消费者B2C网上购物和商家的销售处理 [实验条件] ⑴.个人计算机一台 ⑵.计算机通过局域网形式接入互联网 (3) ...