Catalan Paths

从 \((0,0)\) 走到 \((n,n)\), 每次只能向上或者向右走,不能穿过直线 \(y=x\) 的方案数。

设从 \((0,0)\) 到 \((n,n)\) 的路径集合为 \(S\), 从 \((1,0)\) 到 \((n+1,n)\) 的路经集合 \(S^+\), 从 \((0,1)\) 到 \((n+1,n)\) 的路经集合 \(S^-\), 显然有 \(|S^+|=\binom{2n}{n},|S^-|=\binom{2n}{n-1}\)。 对于一条路径 \(W\in S^+\cup S^-\),让 \(\phi W\) 表示一条路径,如果 \(W\) 没有穿过 \(y=x\), 那么 \(\phi W=W\),否则 \(\phi W\) 表示 \(W\) 关于 \(W\) 与 \(y=x\) 的第一个交点的对称路径。

显然对于任意一条路径 \(W\in S^-\), 它都会穿过 \(y=x\), 并且 \(\phi W\in S^+\), 所以 \(C_n=\binom{2n}{n}-\binom{2n}{n-1}=\frac{\binom{2n}n}{n+1}\)


Vandermonde Determinant

\(\det\begin{gathered}\begin{pmatrix} x_1^{n-1} & x_2^{n-1} & ... & x_n^{n-1} \\ x_1^{n-2} & x_2^{n-2} & ... & x_n^{n-2} \\ ... \\ x_1 & x_2 & ... & x_n \\ 1 & 1 & ... & 1 \end{pmatrix}\end{gathered}=\prod\limits_{1\le i<j\le n}(x_i-x_j)\)

Proof.

\(\text{The left-hand side}\colon\sum\limits_{\sigma\in S(n)}(\text{sign }\sigma)x_{\sigma(1)}^{n-1}x_{\sigma(2)}^{n-2}\cdots x_{\sigma(n)}^0\)

\(\text{The right-hand side}\colon(-1)^mx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}\ (\sum\limits_{i=1}^na_i=\binom{n}{2},m=\#\{j\colon x_j\text{ is taken from }x_i-x_j\})\)

考虑建立竞赛图 \(T\), 对于一条边 \(e=(u,v)\) 我们称 \(u\) 是赢家,并定义 \(e\) 的权重:\(w(e)=x_u\text{ with sign }e=\begin{cases}1 & u<v\\-1 & u>v\end{cases}\)

再定义 \(w(T)=\prod\limits_{e\in T}w(e),\text{sign }T=\prod\limits_{e\in T}\text{ sign }e\)

那显然就有 \(\prod\limits_{1\le i<j\le n}=\sum\limits_{T}(\text{sign }T)w(T)\)

从另一个方面也很好解释为啥这两个很容易能看成相等的,因为竞赛图个数和 \(\prod\limits_{1\le i<j\le n}\) 拆开之后的项数都是 \(2^{\binom{n}{2}}\)

于是现在只需要建立竞赛图与行列式的关系。

首先考虑所有无环的竞赛图,显然可以给 \(1,2...n\) 排一个序构成排列 \(\sigma\), 容易观察到 \(w(T_{\sigma})=x_{\sigma(1)}^{n-1}x_{\sigma(2)}^{n-2}\cdots x_{\sigma(n)^0},\text{ sign }T_{\sigma}=(-1)^{\text{inv }\sigma}=\text{sign }\sigma\)

所以有 \(\det=\sum\limits_{\sigma\in S(n)}(\text{sign }\sigma)w(T_{\sigma})\)

现在考虑想办法过滤掉有环的竞赛图,让集合 \(S\) 表示所有有环的竞赛图集合, \(S^+=\{T\in S\colon \text{sign }T=1\},S^-=\{T\in S\colon \text{sign }T=-1\}\)

对于一个有环的竞赛图 \(T\),显然会存在一些点对使得其入度相同,我们找出所有点对中最小的点 \(i_0\) 和与 \(i_0\) 入度相同的最小的点 \(j_0\), 那么对于一个点 \(k\not= i_0, j_0\), 不妨设 \(i_0\rightarrow j_0\),那么三元组 \(i_0,j_0,k\) 之间的连边关系只可能有下面四种情况:



显然有 \(\#\text{II}=\#\text I + 1\)

考虑设 \(\phi T\) 表示图 \(T\) 将边 \((i_0,j_0)\) 反向后得到的新图,显然有 \(\text{sign }T=-\text{sign }\phi T,w(T)=w(\phi T)\),且一个在 \(S^+\) 中,一个在 \(S^{-}\) 中,于是这些图的贡献会被抵消掉,故原式得证.


The Pfaffian

称对于集合 \(\{1,2...n\}\) 的任意一个两两划分为在 \(\{1,2...n\}\)上的一个匹配 \(\mu\),写作 \(\mu=i_1j_1,i_2j_2,...,i_{n/2}j_{n/2}\text{ with }i_k<j_k\text{ for all }k\),对于一个斜对称矩阵 \(A\),我们记一个符号 \(a_{\mu}=a_{i_1j_1}a_{i_2j_2}\cdots a_{i_{n/2}j_{n/2}}\)

为了定义 \(\mu\) 的符号,考虑画图列出 \(1,2...;\#\mu\) 表示匹配交叉的数量,并且 \(\text{sign }\mu=(-1)^{\#\mu}\)



对于这个矩阵 \(A\),我们定义 \(pfaffian\text{ Pf}(A)=\sum\limits_{\mu}(\text{sign }\mu)a_{\mu}\)

那么有定理 \(\det A=[\text{Pf}(A)]^2\)

Proof.

首先还是考虑行列式的常见形式 \(\det A=\sum\limits_{\sigma\in S(n)}(\text{sign }\sigma)a_{\sigma}\ (a_{\sigma}=a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)})\)

定义 \(S\) 是所有排列中至少包含一个奇环的排列的集合。对于 \(\sigma\in S,\text{let }\sigma=\sigma_1\sigma_2\cdots\sigma_t\) 为其环分解,其中 \(\sigma_1\) 是所有奇环中最小标号所在的奇环,然后定义

显然除了 \(\sigma_1=(k)\) 的情况有 \(a_{\sigma}=-a_{\sigma'},(\text{sign }\sigma)a_{\sigma}=-(\text{sign }\sigma')a_{\sigma'}\), 而对于 \(\sigma_1=(k)\) 的情况,显然有 \(a_{\sigma}=0\)。

于是可以获得结论:\(\det A=\sum\limits_{\sigma\in E}(\text{sign }\sigma)a_{\sigma}\),其中 \(E\in S(n)\) 是所有只包含偶环的排列。

要证明定理,需要找到一个 \((\mu_1,\mu_2)\) 到 \(\sigma\in E\) 的双射关系 \(\phi\) 使得 \((\text{sign }\mu_1)a_{\mu_1}\cdot (\text{sign }\mu_2)a_{\mu_2}=(\text{sign }\sigma)a_{\sigma}\),这里简单举一个例子:



先不考虑符号的问题观察一番。

考虑正向拼凑 \(\sigma\), 考虑如下过程:每次选出未访问过的最小标号点,然后依次沿着 \(\mu1,\mu2\) 中的匹配边走,最后一定会走出若干个偶环。

考虑反向求 \(\mu1,\mu2\) ,考虑如下过程:每次选一个偶环,从上面的最小标号点开始依次把边划分给 \(\mu1,\mu2\)。

现在就只用考虑符号是否能对上。

假设 \(\phi(\mu_1,\mu_2)=(-1)^{e(\sigma)}a_{\sigma},e_(\sigma)=\#\{i\colon i>\sigma(i)\}\)

令 \(\sigma\) 的环分解是 \(\sigma_1\sigma_2\cdots\sigma_t;\) 那么 \(\text{sign }\sigma=(-1)^t\)

所以只需要证明 \(\text{sign }\mu_1\cdot\text{sign }\mu_2=(-1)^{e(\sigma)+t}\) 即 \(\#\mu_1+\#\mu_2-e(\sigma)\equiv t\ (\text{mod 2})\)

容易证明,对于这个环分解,如果我们交换 \(i,i+1\) 的位置,得到的 \(\#\mu_1'+\#\mu_2'-e(\sigma)'\) 和 \(\#\mu_1+\#\mu_2-e(\sigma)\) 奇偶性相同,故可以把 \(\sigma\) 经过多次交换变成



把匹配画出来显然长这样



显然对于这个东西, \(\#\mu_1'=\#\mu_2'=0,e(\sigma)'=t\) ,故原定理得证.

The Involution Principle的更多相关文章

  1. Cognition math based on Factor Space (2016.05)

    Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...

  2. Atitit.软件开发的几大规则,法则,与原则Principle v3

    Atitit.软件开发的几大规则,法则,与原则Principle  v31.1. 修改历史22. 设计模式六大原则22.1. 设计模式六大原则(1):单一职责原则22.2. 设计模式六大原则(2):里 ...

  3. C#设计模式系列:开闭原则(Open Close Principle)

    1.开闭原则简介 开闭原则对扩展开放,对修改关闭,开闭原则是面向对象设计中可复用设计的基石. 2.开闭原则的实现 实现开闭原则的关键就在于抽象,把系统的所有可能的行为抽象成一个抽象底层,这个抽象底层规 ...

  4. 开放封闭原则(Open Closed Principle)

    在面向对象的设计中有很多流行的思想,比如说 "所有的成员变量都应该设置为私有(Private)","要避免使用全局变量(Global Variables)",& ...

  5. 最少知识原则(Least Knowledge Principle)

    最少知识原则(Least Knowledge Principle),或者称迪米特法则(Law of Demeter),是一种面向对象程序设计的指导原则,它描述了一种保持代码松耦合的策略.其可简单的归纳 ...

  6. 接口分离原则(Interface Segregation Principle)

    接口分离原则(Interface Segregation Principle)用于处理胖接口(fat interface)所带来的问题.如果类的接口定义暴露了过多的行为,则说明这个类的接口定义内聚程度 ...

  7. 依赖倒置原则(Dependency Inversion Principle)

    很多软件工程师都多少在处理 "Bad Design"时有一些痛苦的经历.如果发现这些 "Bad Design" 的始作俑者就是我们自己时,那感觉就更糟糕了.那么 ...

  8. 里氏替换原则(Liskov Substitution Principle)

    开放封闭原则(Open Closed Principle)是构建可维护性和可重用性代码的基础.它强调设计良好的代码可以不通过修改而扩展,新的功能通过添加新的代码来实现,而不需要更改已有的可工作的代码. ...

  9. 单一职责原则(Single Responsibility Principle)

    单一职责原则(SRP:The Single Responsibility Principle) 一个类应该有且只有一个变化的原因. There should never be more than on ...

随机推荐

  1. 01-flask旅行网系统功能设计

    应用flask框架实现一个介绍旅游景区及旅游攻略的网站,一个旅行网包括前台和后台两部分,前台部分用户使用,后台部分管理员使用,系统开发坏境如下: 虚拟环境:virtualenv 数据库:MySQL 开 ...

  2. Go的100天之旅-04基础数据类型

    基础数据类型 在变量的定义中,我们讲了每个变量是有类型的,类型在计算机中是用来约束数据的解释.Go语言和其它计算机语言一样,提供丰富了丰富的数据类型,我们就来看看到底有哪些类型,同时也可以比较一下它和 ...

  3. socket采用epoll编程demo

    epoll工作流程 首先,需要调用epoll_create创建epoll: 此后我们就可以进行socket/bind/listen: 然后调用epoll_ctl进行注册: 接下来,就可以通过一个whi ...

  4. 深入浅出ReentrantLock源码解析

    ReentrantLock不但是可重入锁,而且还是公平或非公平锁,在工作中会经常使用到,将自己对这两种锁的理解记录下来,希望对大家有帮助. 前提条件 在理解ReentrantLock时需要具备一些基本 ...

  5. CobaltStrike上线Linux主机(CrossC2)

    一.简述 CrossC2插件是为企业和红团队人员提供的安全框架,支持 CobaltStrike 对其他平台的渗透测试(Linux / MacOS /...),支持自定义模块,并包括一些常用的渗透模块. ...

  6. ToText Basic 语法和 Crystal 语法

    本文转自http://www.softwelt.com/Know/KnowDetail-2236860.html ToText 和 CStr 是等价函数. 重载 ToText (x) ToText ( ...

  7. 3.新手建站教程系列之认识WordPress和第一篇文章

    上一期咱已经把本地环境和wp网站给搭建出来了,接下来就是来认识这个程序了.进入网站后台,地址为你的网址/wp-admin 后台名字叫做仪表盘,首页是一个信息合集区域,上面会显示有多少文章,多少页面以及 ...

  8. 高效C++:设计与声明

    C++软件开发可以理解为设计一系列的类,让这些类相互使用,最终实现我们所需要的功能.类与类之间的相互关系可以很复杂,也可以很简单,如何简单高效的描述类与类之间的关系是设计的难点之一.遵循本文所提供的方 ...

  9. Statezhong shiyong redux props

    在构造方法中使用props给state赋值不允许, 原因需要检查

  10. Git的忽略文件

    *.iml.gradle.idea/local.properties/.idea/workspace.xml/.idea/libraries.DS_Store/build/captures.exter ...