目录

主成分分析(PCA)——以葡萄酒数据集分类为例

  1、认识PCA

    (1)简介

    (2)方法步骤

  2、提取主成分

  3、主成分方差可视化

  4、特征变换

  5、数据分类结果

  6、完整代码

  总结:


1、认识PCA

(1)简介

数据降维的一种方法是通过特征提取实现,主成分分析PCA就是一种无监督数据压缩技术,广泛应用于特征提取和降维。

换言之,PCA技术就是在高维数据中寻找最大方差的方向,将这个方向投影到维度更小的新子空间。例如,将原数据向量x,通过构建  维变换矩阵 W,映射到新的k维子空间,通常()。

原数据d维向量空间  经过 ,得到新的k维向量空间 .

第一主成分有最大的方差,在PCA之前需要对特征进行标准化,保证所有特征在相同尺度下均衡。

(2)方法步骤

  1. 标准化d维数据集
  2. 构建协方差矩阵。
  3. 将协方差矩阵分解为特征向量和特征值。
  4. 对特征值进行降序排列,相应的特征向量作为整体降序。
  5. 选择k个最大特征值的特征向量,
  6. 根据提取的k个特征向量构造投影矩阵
  7. d维数据经过变换获得k维。

下面使用python逐步完成葡萄酒的PCA案例。

2、提取主成分

下载葡萄酒数据集wine.data到本地,或者到时在加载数据代码是从远程服务器获取,为了避免加载超时推荐下载本地数据集。

来看看数据集长什么样子!一共有3类,标签为1,2,3 。每一行为一组数据,由13个维度的值表示,我们将它看成一个向量。

开始加载数据集。

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt # load data
df_wine = pd.read_csv('D:\\PyCharm_Project\\maching_learning\\wine_data\\wine.data', header=None) # 本地加载,路径为本地数据集存放位置
# df_wine=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data',header=None)#服务器加载

下一步将数据按7:3划分为training-data和testing-data,并进行标准化处理。

# split the data,train:test=7:3
x, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, stratify=y, random_state=0) # standardize the feature 标准化
sc = StandardScaler()
x_train_std = sc.fit_transform(x_train)
x_test_std = sc.fit_transform(x_test)

这个过程可以自行打印出数据进行观察研究。

接下来构造协方差矩阵。 维协方差对称矩阵,实际操作就是计算不同特征列之间的协方差。公式如下:

公式中,jk就是在矩阵中的行列下标,i表示第i行数据,分别为特征列 j,k的均值。最后得到的协方差矩阵是13*13,这里以3*3为例,如下:

下面使用numpy实现计算协方差并提取特征值和特征向量。

# 构造协方差矩阵,得到特征向量和特征值
cov_matrix = np.cov(x_train_std.T)
eigen_val, eigen_vec = np.linalg.eig(cov_matrix)
# print("values\n ", eigen_val, "\nvector\n ", eigen_vec)# 可以打印看看

3、主成分方差可视化

首先,计算主成分方差比率,每个特征值方差与特征值方差总和之比:

代码实现:

# 解释方差比
tot = sum(eigen_val) # 总特征值和
var_exp = [(i / tot) for i in sorted(eigen_val, reverse=True)] # 计算解释方差比,降序
# print(var_exp)
cum_var_exp = np.cumsum(var_exp) # 累加方差比率
plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='独立解释方差') # 柱状 Individual_explained_variance
plt.step(range(1, 14), cum_var_exp, where='mid', label='累加解释方差') # Cumulative_explained_variance
plt.ylabel("解释方差率")
plt.xlabel("主成分索引")
plt.legend(loc='right')
plt.show()

可视化结果看出,第一二主成分占据大部分方差,接近60%。

4、特征变换

这一步需要构造之前讲到的投影矩阵,从高维d变换到低维空间k。

先将提取的特征对进行降序排列:

# 特征变换
eigen_pairs = [(np.abs(eigen_val[i]), eigen_vec[:, i]) for i in range(len(eigen_val))]
eigen_pairs.sort(key=lambda k: k[0], reverse=True) # (特征值,特征向量)降序排列

从上步骤可视化,选取第一二主成分作为最大特征向量进行构造投影矩阵。

w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis]))  # 降维投影矩阵W

13*2维矩阵如下:

这时,将原数据矩阵与投影矩阵相乘,转化为只有两个最大的特征主成分。

x_train_pca = x_train_std.dot(w)

5、数据分类结果

使用 matplotlib进行画图可视化,可见得,数据分布更多在x轴方向(第一主成分),这与之前方差占比解释一致,这时可以很直观区别3种不同类别。

代码实现:

color = ['r', 'g', 'b']
marker = ['s', 'x', 'o']
for l, c, m in zip(np.unique(y_train), color, marker):
plt.scatter(x_train_pca[y_train == l, 0],
x_train_pca[y_train == l, 1],
c=c, label=l, marker=m)
plt.title('Result')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend(loc='lower left')
plt.show()

本案例介绍PCA单个步骤和实现过程,一点很重要,PCA是无监督学习技术,它的分类没有使用到样本标签,上面之所以看出3类不同标签,是后来画图时候自行添加的类别区分标签。

6、完整代码

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt def main():
# load data
df_wine = pd.read_csv('D:\\PyCharm_Project\\maching_learning\\wine_data\\wine.data', header=None) # 本地加载
# df_wine=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data',header=None)#服务器加载 # split the data,train:test=7:3
x, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, stratify=y, random_state=0) # standardize the feature 标准化单位方差
sc = StandardScaler()
x_train_std = sc.fit_transform(x_train)
x_test_std = sc.fit_transform(x_test)
# print(x_train_std) # 构造协方差矩阵,得到特征向量和特征值
cov_matrix = np.cov(x_train_std.T)
eigen_val, eigen_vec = np.linalg.eig(cov_matrix)
# print("values\n ", eigen_val, "\nvector\n ", eigen_vec) # 解释方差比
tot = sum(eigen_val) # 总特征值和
var_exp = [(i / tot) for i in sorted(eigen_val, reverse=True)] # 计算解释方差比,降序
# print(var_exp)
# cum_var_exp = np.cumsum(var_exp) # 累加方差比率
# plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
# plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='独立解释方差') # 柱状 Individual_explained_variance
# plt.step(range(1, 14), cum_var_exp, where='mid', label='累加解释方差') # Cumulative_explained_variance
# plt.ylabel("解释方差率")
# plt.xlabel("主成分索引")
# plt.legend(loc='right')
# plt.show() # 特征变换
eigen_pairs = [(np.abs(eigen_val[i]), eigen_vec[:, i]) for i in range(len(eigen_val))]
eigen_pairs.sort(key=lambda k: k[0], reverse=True) # (特征值,特征向量)降序排列
# print(eigen_pairs)
w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) # 降维投影矩阵W
# print(w)
x_train_pca = x_train_std.dot(w)
# print(x_train_pca)
color = ['r', 'g', 'b']
marker = ['s', 'x', 'o']
for l, c, m in zip(np.unique(y_train), color, marker):
plt.scatter(x_train_pca[y_train == l, 0],
x_train_pca[y_train == l, 1],
c=c, label=l, marker=m)
plt.title('Result')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend(loc='lower left')
plt.show() if __name__ == '__main__':
main()

总结:

本案例介绍PCA步骤和实现过程,单步进行是我更理解PCA内部实行的过程,主成分分析PCA作为一种无监督数据压缩技术,学习之后更好掌握数据特征提取和降维的实现方法。记录学习过程,不仅能让自己更好的理解知识,而且能与大家共勉,希望我们都能有所帮助!

我的博客园:

我的CSDN:原创 PCA数据降维原理及python应用(葡萄酒案例分析)


版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

主成分分析PCA数据降维原理及python应用(葡萄酒案例分析)的更多相关文章

  1. LDA线性判别分析原理及python应用(葡萄酒案例分析)

    目录 线性判别分析(LDA)数据降维及案例实战 一.LDA是什么 二.计算散布矩阵 三.线性判别式及特征选择 四.样本数据降维投影 五.完整代码 结语 一.LDA是什么 LDA概念及与PCA区别 LD ...

  2. [机器学习]-PCA数据降维:从代码到原理的深入解析

    &*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Prin ...

  3. 深入学习主成分分析(PCA)算法原理(Python实现)

    一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼 ...

  4. 机器学习--主成分分析(PCA)算法的原理及优缺点

    一.PCA算法的原理 PCA(principle component analysis),即主成分分析法,是一个非监督的机器学习算法,是一种用于探索高维数据结构的技术,主要用于对数据的降维,通过降维可 ...

  5. 【Python代码】TSNE高维数据降维可视化工具 + python实现

    目录 1.概述 1.1 什么是TSNE 1.2 TSNE原理 1.2.1入门的原理介绍 1.2.2进阶的原理介绍 1.2.2.1 高维距离表示 1.2.2.2 低维相似度表示 1.2.2.3 惩罚函数 ...

  6. 主成分分析 (PCA) 与其高维度下python实现(简单人脸识别)

    Introduction 主成分分析(Principal Components Analysis)是一种对特征进行降维的方法.由于观测指标间存在相关性,将导致信息的重叠与低效,我们倾向于用少量的.尽可 ...

  7. PCA数据降维

    Principal Component Analysis 算法优缺点: 优点:降低数据复杂性,识别最重要的多个特征 缺点:不一定需要,且可能损失有用的信息 适用数据类型:数值型数据 算法思想: 降维的 ...

  8. 初识PCA数据降维

    PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵. 一.预备知识 1.1 协方差分析 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这 ...

  9. 运用sklearn进行主成分分析(PCA)代码实现

    基于sklearn的主成分分析代码实现 一.前言及回顾 二.sklearn的PCA类介绍 三.分类结果区域可视化函数 四.10行代码完成葡萄酒数据集分类 五.完整代码 六.总结 基于sklearn的主 ...

随机推荐

  1. Flutter 快捷开发 Mac Android Studio 篇

    老孟导读:此快捷方式适用于Mac下的 Android Studio .Windows 下的快捷方式请参考这篇文章:https://juejin.im/post/5efe71365188252e7d7f ...

  2. Java常用API(Math类)

    Java常用API(Math类) Math类的作用 java.lang.Math 类包含用于执行基本数学运算的方法,如初等指数.对数.平方根和三角函数.类似这样的工具 类,其所有方法均为静态方法,并且 ...

  3. 使用Red5-Pro Android官方Demo拆解分析(一)

    一.配置文件 1.导入库文件jniLibs到main文件夹下 2.导入red5streaming.jar 3.在build里到入其他的包,代码如下: dependencies { implementa ...

  4. Python Ethical Hacking - BACKDOORS(1)

    REVERSE_BACKDOOR Access file system. Execute system commands. Download files. Upload files. Persiste ...

  5. P1866 编号

    大致题意: 求太郎的n只兔子的编号的排列种数 基本思路: 每只兔子都有一个范围,那么每只兔子的范围就是这只兔子选择编号的种数. 以5 8为例,第一只兔子有5种,第二只兔子有8种,而第一只兔子选择后,第 ...

  6. ResNeXt论文阅读笔记.md

    目录 1. 提出背景 2. 核心思想 3. 论文核心 4. 分组卷积 5. 核心代码 论文: Aggregated Residual Transformations for Deep Neural N ...

  7. Spring Cache缓存注解

    目录 Spring Cache缓存注解 @Cacheable 键生成器 @CachePut @CacheEvict @Caching @CacheConfig Spring Cache缓存注解 本篇文 ...

  8. ElasticJob和SpringBoot

    本文以在SpringBoot下集成ElasticJob的方式对其进行浅析,仅仅是简单使用,不涉及源码级别研究. 事先必备: 注册中心——zookeeper 简略结构: 代码目录结构: ├─.idea ...

  9. Skill 脚本演示 ycAutoSnap.skl

    https://www.cnblogs.com/yeungchie/ ycAutoSnap.skl 版图编辑中自动吸附 Path 的 "垂直线头",也可以批量对齐 Bus 走线,也 ...

  10. 7.12 NOI模拟赛 探险队 期望 博弈 dp 最坏情况下最优策略 可并堆

    LINK:探险队 非常难的题目 考试的时候爆零了 完全没有想到到到底怎么做 (当时去刚一道数论题了. 首先考虑清楚一件事情 就是当前是知道整张地图的样子 但是不清楚到底哪条边断了. 所以我们要做的其实 ...