从一次生产消费者的bug看看线程池如何增加线程
0 背景
某个闲来无事的下午,看到旧有的项目中,有个任务调度的地方都是同步的操作,就是流程A的完成依赖流程B,流程B的完成依赖流程C,按此类推。
作为一名垃圾代码生产者,QA的噩梦、故障报告枪手的我来说,发掘可以“优化”的空间,是我的分内之事。
因为是在一个工程内,并且本身工程组件没有使用到任何消息队列的软件(例如kafka、rocketMQ),如果只是要因为这个功能而贸然引用,对其进行维护的成本就比较高,我的技术组长大人是万万不会同意的。没办法,自己来吧。很快的,我完成了下面几个类的编写
整体的设计很简单,就是传统的生产消费者,只是利用了阻塞队列,作为缓冲。
- 在生产者内部有个定时执行的线程,将队列中的消息转发给消费者。生产者会单独占用一个线程
- 每个消费者自己也有一个阻塞队列,用来接收生产者产生的消息,消费者们因为可能不是所有的topic每时每刻都会有消息的产生,因此利用线程池即可。
1 代码实现
public interface IEvent {
String getTopic();
}
// 消息实体
public class Event<T> implements IEvent{
/**
* 产生的时间戳
*/
private long ts = System.currentTimeMillis();
/**
* 携带的实体数据
*/
private T entity;
/**
* topic
*/
private String topic;
// setter getter 省略
}
// 如何处理消息
public interface ConfigListener {
String ALL = "all";
/**
* 提供给监听器处理
*
* @param event
*/
void handler(IEvent event);
/**
* 优先级顺序
* @return
*/
int getOrder();
/**
*
* @return
*/
String getTopic();
}
// 创建4个消息处理的类,这里省略了,只展示一个
public class RandomSleepConfigListener implements ConfigListener {
@Override
public void handler(IEvent event) {
logger.info("execute " + this.getClass().getSimpleName());
// 20ms - 50ms
long t = (long) (Math.random() * 5) + 5L;
try {
TimeUnit.MILLISECONDS.sleep(t);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
// 线程池类
public class ScheduleThreadPool {
private static final AtomicInteger atomic = new AtomicInteger();
// 被生产者单独使用的线程
public static final ExecutorService EVENT_POOL = Executors.newFixedThreadPool(1, r -> new Thread(r, "EVENT-PRODUCER-" + atomic.incrementAndGet()));
/**
* 常驻线程2个,最大8个,最多接受任务128个,超过则由提交线程来处理
*/
public static final ExecutorService EVENT_CONSUMER_POOL =
new ThreadPoolExecutor(2, 8, 50L,
TimeUnit.MILLISECONDS,
new ArrayBlockingQueue<>(128),
r -> new Thread(r, "EVENT-CONSUMER-" + atomic.incrementAndGet()),
new ThreadPoolExecutor.CallerRunsPolicy());
}
// ############################### 以上的准备工作完成,下面就是编写生产者和消费者 ###########################################
public class Producer {
private static final Logger logger = LoggerFactory.getLogger(MethodHandles.lookup().lookupClass());
/**
* 外部提交的消息体会被送入到这个队列当中
*/
private static final ArrayBlockingQueue<IEvent> blockingQueue = new ArrayBlockingQueue<>(128);
/**
* topic, consumer
*/
private static Map<String, Consumer> topic2ConsumerMap = Maps.newHashMap();
// 一些初始化的工作
static {
logger.info("Producer init start...");
// SPI方式插件式加载,这里可以改为你熟悉的加载类的方式
Iterator<ConfigListener> configListenerIterator = ServiceBootstrap.loadAll(ConfigListener.class);
// 整体遍历一遍,不同的listener分散到不同的地方去
while (configListenerIterator.hasNext()) {
ConfigListener configListener = configListenerIterator.next();
String topic = configListener.getTopic();
// 没有明确topic的,我们不进行处理
if (null == topic) {
continue;
}
logger.info("we init {} topic", topic);
if (topic2ConsumerMap.containsKey(topic)) {
topic2ConsumerMap.get(topic).addListener(configListener);
} else {
topic2ConsumerMap.put(topic, new Consumer(topic).addListener(configListener));
}
}
// 如果有定义对全部都适用的事件处理,需要加入到每个topic的listener的队列中去
if (topic2ConsumerMap.containsKey(ConfigListener.ALL)) {
Consumer consumer = topic2ConsumerMap.get(ConfigListener.ALL);
topic2ConsumerMap.remove(ConfigListener.ALL);
for (Map.Entry<String, Consumer> entry : topic2ConsumerMap.entrySet()) {
entry.getValue().addAllListener(consumer.getPriorityList());
}
}
// 启动监听线程
ScheduleThreadPool.EVENT_POOL.execute(() -> {
//noinspection InfiniteLoopStatement
int i = 0;
while (true) {
try {
// 从队列获取需要处理的任务,没有会进行阻塞
IEvent iEvent = blockingQueue.take();
logger.info("from producer queue take a message {} {}", iEvent.getTopic(), (i++));
topic2ConsumerMap.get(iEvent.getTopic()).addEvent(iEvent);
} catch (InterruptedException e) {
//
}
}
});
logger.info("Producer init end...");
}
/**
* 阻塞队列添加要处理的事件
* @param iEvent
* @return true 添加成功
*/
public static void publish(IEvent iEvent) throws InterruptedException {
logger.info("publish start...");
// 当队列满时,这个方法会被阻塞
blockingQueue.put(iEvent);
logger.info("publish over...");
}
}
public class Consumer {
private static final Logger logger = LoggerFactory.getLogger(MethodHandles.lookup().lookupClass());
/**
* 排序好的列表
*/
private List<ConfigListener> priorityList = Lists.newArrayListWithCapacity(16);
/**
* 降序排列
*/
private Comparator<ConfigListener> comparator = (o1, o2) -> o2.getOrder() - o1.getOrder();
/**
* 等待被处理的事件
*/
private LinkedBlockingQueue<IEvent> waitEvent = new LinkedBlockingQueue<>(32);
/**
* 统计已经完成的任务数
*/
private AtomicInteger count = new AtomicInteger();
/**
* 处理哪种topic
*/
private String topic;
// //CODE-B 这块代码是后来产生问题的代码,也是因为这个代码引起了我对线程池创建过程的好奇
// {
// logger.info("non-static invoke--------");
// // 创建任务提交
// ScheduleThreadPool.EVENT_CONSUMER_POOL.execute(() -> {
// // 注意这里有个循环
// for (;;) {
// try {
// logger.info("take event");
// IEvent take = waitEvent.take();
// priorityList.forEach(c -> c.handler(take));
// int t = count.incrementAndGet();
// logger.info("TOPIC[{}] size {}, remainingCapacity {} finish {} ",
// topic, waitEvent.size(), waitEvent.remainingCapacity(), t);
// } catch (InterruptedException e) {
// // 记录错误失败
// }
// }
// });
// }
public Consumer(String topic) {
this.topic = topic;
}
public List<ConfigListener> getPriorityList() {
return priorityList;
}
public Consumer addListener(ConfigListener listener) {
priorityList.add(listener);
priorityList.sort(comparator);
return this;
}
public void addAllListener(Collection<? extends ConfigListener> c) {
priorityList.addAll(c);
priorityList.sort(comparator);
}
public void addEvent(IEvent iEvent) {
try {
logger.info(" topic {} queueSize {} finish {}", this.topic, waitEvent.size(), count.get());
waitEvent.put(iEvent);
} catch (InterruptedException e) {
//
}
// CODE-A
ScheduleThreadPool.EVENT_CONSUMER_POOL.execute(() -> {
// 注意这里和分发的producer不一样,不使用循环
try {
logger.info("take event");
IEvent take = waitEvent.take();
priorityList.forEach(c -> c.handler(take));
int t = count.incrementAndGet();
logger.info("TOPIC[{}] size {}, remainingCapacity {} finish {} ",
topic, waitEvent.size(), waitEvent.remainingCapacity(), t);
} catch (InterruptedException e) {
// 记录错误失败
}
});
}
}
// 测试类
public class ProductTest{
// 这里我自己创建了4个消息处理的类,对应的topic分别如下
String[] topics = {"random1","random2","random3","random4"};
@Test(timeout = 30000L)
public void publish() throws InterruptedException {
for (int i = 0; i < 720; i++) {
int j = i & 0x3;
System.out.println(i);
Producer.publish(new Event<String>("hello", topics[j]));
}
TimeUnit.SECONDS.sleep(60L);
}
}
2 开搞
代码都准备好了以后,我们就开始了,debug出来的结果和设想的符合预期
4个topic,720个任务,每个处理掉180个
2021-01-17 16:27:56.210 [EVENT-CONSUMER-3] INFO - TOPIC[random1] size 0, remainingCapacity 32 finish 180
2021-01-17 16:27:56.210 [EVENT-CONSUMER-2] INFO - TOPIC[random4] size 1, remainingCapacity 31 finish 179
2021-01-17 16:27:56.210 [EVENT-CONSUMER-3] INFO - take event
2021-01-17 16:27:56.210 [EVENT-CONSUMER-2] INFO - take event
2021-01-17 16:27:56.210 [EVENT-CONSUMER-3] INFO - execute RandomSleepConfigListener2
2021-01-17 16:27:56.210 [EVENT-CONSUMER-2] INFO - execute RandomSleepConfigListener3
2021-01-17 16:27:56.215 [EVENT-CONSUMER-3] INFO - TOPIC[random2] size 0, remainingCapacity 32 finish 180
2021-01-17 16:27:56.215 [EVENT-CONSUMER-3] INFO - take event
2021-01-17 16:27:56.215 [EVENT-CONSUMER-3] INFO - execute RandomSleepConfigListener4
2021-01-17 16:27:56.217 [EVENT-CONSUMER-2] INFO - TOPIC[random3] size 0, remainingCapacity 32 finish 180
2021-01-17 16:27:56.221 [EVENT-CONSUMER-3] INFO - TOPIC[random4] size 0, remainingCapacity 32 finish 180
嗯,目前为止觉得很完美,然后看consumer类,觉得每次任务被推入阻塞队列,然后执行线程去从阻塞队列中去拉取消息出来,这不符合我作死的风格,改。
然后就变为了CODE-B的模样,线程池创建出来后,一直循环来拉取即可
{
logger.info("non-static invoke--------");
// 创建任务提交
ScheduleThreadPool.EVENT_CONSUMER_POOL.execute(() -> {
// 注意这里有个循环
for (;;) {
try {
logger.info("take event");
IEvent take = waitEvent.take();
priorityList.forEach(c -> c.handler(take));
int t = count.incrementAndGet();
logger.info("TOPIC[{}] size {}, remainingCapacity {} finish {} ",
topic, waitEvent.size(), waitEvent.remainingCapacity(), t);
} catch (InterruptedException e) {
// 记录错误失败
}
}
});
}
然后,将CODE-A的代码注释掉,神奇的事情就发生了,直接一发入魂
2021-01-17 16:32:49.539 [Time-limited test] INFO - Producer init start...
2021-01-17 16:32:49.562 [Time-limited test] INFO - we init all topic
2021-01-17 16:32:49.806 [Time-limited test] INFO - non-static invoke-------- ##########
2021-01-17 16:32:49.819 [Time-limited test] INFO - we init random1 topic
2021-01-17 16:32:49.819 [Time-limited test] INFO - non-static invoke-------- ##########
2021-01-17 16:32:49.819 [EVENT-CONSUMER-1] INFO - take event** ##########
2021-01-17 16:32:49.820 [EVENT-CONSUMER-2] INFO - take event** ##########
2021-01-17 16:32:49.821 [Time-limited test] INFO - we init random2 topic
2021-01-17 16:32:49.821 [Time-limited test] INFO - non-static invoke--------
2021-01-17 16:32:49.824 [Time-limited test] INFO - we init random3 topic
2021-01-17 16:32:49.824 [Time-limited test] INFO - non-static invoke--------
2021-01-17 16:32:49.826 [Time-limited test] INFO - we init random4 topic
2021-01-17 16:32:49.880 [Time-limited test] INFO - non-static invoke--------
2021-01-17 16:32:49.884 [Time-limited test] INFO - Producer init end...
2021-01-17 16:32:49.884 [Time-limited test] INFO - publish start...
2021-01-17 16:32:49.884 [Time-limited test] INFO - publish over...
2021-01-17 16:32:49.885 [ **EVENT-PRODUCER-3** ] INFO - topic random1 queueSize 0 finish 0 ##########
2021-01-17 16:32:49.885 [Time-limited test] INFO - publish over...
2021-01-17 16:32:49.886 [EVENT-PRODUCER-3] INFO - from producer queue take a message random2 1
2021-01-17 16:32:49.886 [Time-limited test] INFO - publish start...
2021-01-17 16:32:49.886 [ **EVENT-PRODUCER-3** ] INFO - topic random2 queueSize 0 finish 0 ##########
2021-01-17 16:32:49.886 [Time-limited test] INFO - publish over...
2021-01-17 16:32:49.886 [EVENT-PRODUCER-3] INFO - from producer queue take a message random3 2
2021-01-17 16:32:49.886 [Time-limited test] INFO - publish start...
2021-01-17 16:32:49.886 [**EVENT-PRODUCER-3**] INFO - topic random3 queueSize 0 finish 0 ##########
2021-01-17 16:32:49.886 [Time-limited test] INFO - publish over...
2021-01-17 16:32:49.886 [EVENT-PRODUCER-3] INFO - from producer queue take a message random4 3
2021-01-17 16:32:49.886 [**EVENT-PRODUCER-3**] INFO - topic random4 queueSize 0 finish 0 ##########
....
2021-01-17 16:32:50.031 [EVENT-PRODUCER-3] INFO - topic random1 queueSize 27 finish 5
2021-01-17 16:32:50.031 [EVENT-PRODUCER-3] INFO - from producer queue take a message random2 129
2021-01-17 16:32:50.031 [EVENT-PRODUCER-3] INFO - topic random2 queueSize 32 finish 0
.
.
.
2021-01-17 16:32:50.275 [EVENT-CONSUMER-2] INFO - execute RandomSleepConfigListener
2021-01-17 16:32:50.283 [EVENT-CONSUMER-2] INFO - TOPIC[random1] size 4, remainingCapacity 28 finish 29
2021-01-17 16:32:50.283 [EVENT-CONSUMER-2] INFO - take event
2021-01-17 16:32:50.283 [EVENT-CONSUMER-2] INFO - execute RandomSleepConfigListener
2021-01-17 16:32:50.289 [EVENT-CONSUMER-2] INFO - TOPIC[random1] size 3, remainingCapacity 29 finish 30
2021-01-17 16:32:50.290 [EVENT-CONSUMER-2] INFO - take event
2021-01-17 16:32:50.290 [EVENT-CONSUMER-2] INFO - execute RandomSleepConfigListener
2021-01-17 16:32:50.299 [EVENT-CONSUMER-2] INFO - TOPIC[random1] size 2, remainingCapacity 30 finish 31
2021-01-17 16:32:50.299 [EVENT-CONSUMER-2] INFO - take event
2021-01-17 16:32:50.299 [EVENT-CONSUMER-2] INFO - execute RandomSleepConfigListener
2021-01-17 16:32:50.305 [EVENT-CONSUMER-2] INFO - TOPIC[random1] size 1, remainingCapacity 31 finish 32
2021-01-17 16:32:50.305 [EVENT-CONSUMER-2] INFO - take event
2021-01-17 16:32:50.306 [EVENT-CONSUMER-2] INFO - execute RandomSleepConfigListener
2021-01-17 16:32:50.315 [EVENT-CONSUMER-2] INFO - TOPIC[random1] size 0, remainingCapacity 32 finish 33
2021-01-17 16:32:50.316 [EVENT-CONSUMER-2] INFO - take event
看日志是只有topic1被消费了,其他的topic都没有被消费。
第一段和第二段表明,生产者是如期按照我们设想的,逐个将详细进行分发,我的测试程序是按顺序进行1~4的消息分发的。
EVENT-CONSUMER的线程编号只有到2,3是属于生产者线程的编号。于是我就感觉很奇怪,为什么线程池没有继续创建线程呢?
3 分析原因
我开始去查看了线程池execute()这个方法
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0) // ------------ debug后发现进入到这里条件无法满足
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
英文注释解释的很明白,execute在线程创建方面有会进行3种情况考虑
1 本身workthread 小于 coresize 则果断进行创建
2 线程池处于运行状态,将要执行的命令进行入队,这个入队就是我们在创建线程池时使用的队列,我这里用的是128个
3 进入到第三部可能是线程池已经关闭了,或者是队列已经满了,如果是关闭,这一步肯定会失败,如果是队列满了那么也是同样的,之所以要再直接创建工作线程,是因为可能这个瞬间刚好有机会创建,因此不放弃这种可行性。
4 哦豁是这样
随后我就行了debug大法,发现一开始的2个消费者线程都是创建的十分的顺利,但是后面的线程任务就没办法了创建出新的线程了。
仔细观察,发现是if (workerCountOf(recheck) == 0)
到这一步判断不满足条件,就不往下进行创建了。
那么是为什么呢? 哦原来是因为使用了死循环,尽管是阻塞队列,但线程却被死死地占用了。这个判断值不会为0. 于是就一直只有一个topic在消费消息。
至于卡住的原因也很简单,使用阻塞队列,一定是某一个阻塞了。从后面观察来看,是生产者的缓冲队列满了。只进行到32的原因,也是因为刚好每个消费者的缓冲队列是32的大小。4个就是一个生产者的队列长度。当第一批128个分发玩了以后,从129开始,给topic的队列已经满了,put进行的阻塞。于是生产者和消费者处于全员懵逼的状态。
最开始没有使用死循环的代码就和一般我们写的多线程代码一样,大家都靠本事去竞争,因此每个consumer都有机会被执行。
那么最后一个问题,要想让线程池创建超过coreSize的线程要怎么做呢?从注释长短你就能看出,哪些条件比较简单,满足条件3只要我们创造多一些任务即可,或者将线程池的工作队列大小调小。(这里我选择调整队列大小,改为16,很快就创建出新的线程了)
5 结论
那么线程池创建的哲学是什么?
首先,按照coreSize,创建出24h不间断休息的好员工
其次,有处理不来的工作先堆放到某个地方,等待处理
最后,核心员工不行,赶紧招募临时工,来一起进行攻坚
希望这篇文章对你理解线程池有所帮助。
从一次生产消费者的bug看看线程池如何增加线程的更多相关文章
- 线程锁,threadinglocal,线程池,生产者消费者模型
1.线程锁 1.锁Lock(只能锁一次) import threading import time v = [] lock = threading.Lock() def func(arg): lock ...
- java 线程池、多线程实战(生产者消费者模型,1 vs 10) 附案例源码
导读 前二天写了一篇<Java 多线程并发编程>点我直达,放国庆,在家闲着没事,继续写剩下的东西,开干! 线程池 为什么要使用线程池 例如web服务器.数据库服务器.文件服务器或邮件服务器 ...
- (BUG已修改,最优化)安卓ListView异步加载网络图片与缓存软引用图片,线程池,只加载当前屏之说明
原文:http://blog.csdn.net/java_jh/article/details/20068915 迟点出更新的.这个还有BUG.因为软引应不给力了.2.3之后 前几天的原文有一个线程管 ...
- 一个神奇的bug:OOM?优雅终止线程?系统内存占用较高?
摘要:该项目是DAYU平台的数据开发(DLF),数据开发中一个重要的功能就是ETL(数据清洗).ETL由源端到目的端,中间的业务逻辑一般由用户自己编写的SQL模板实现,velocity是其中涉及的一种 ...
- SpringBoot使用异步线程池实现生产环境批量数据推送
前言 SpringBoot使用异步线程池: 1.编写线程池配置类,自定义一个线程池: 2.定义一个异步服务: 3.使用@Async注解指向定义的线程池: 这里以我工作中使用过的一个案例来做描述,我所在 ...
- 看起来是线程池的BUG,但是我认为是源码设计不合理。
你好呀,我是歪歪. 前几天看到一个 JDK 线程池的 BUG,我去了解了一下,摸清楚了它的症结所在之后,我觉得这个 BUG 是属于一种线程池方法设计不合理的地方,而且官方在知道这个 BUG 之后表示: ...
- Kafka下的生产消费者模式与订阅发布模式
原文:https://blog.csdn.net/zwgdft/article/details/54633105 在RabbitMQ下的生产消费者模式与订阅发布模式一文中,笔者以“数据接入”和“事 ...
- Python | 面试的常客,经典的生产消费者模式
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是Python专题的第23篇文章,我们来聊聊关于多线程的一个经典设计模式. 在之前的文章当中我们曾经说道,在多线程并发的场景当中,如果我 ...
- Java多线程系列--“基础篇”11之 生产消费者问题
概要 本章,会对“生产/消费者问题”进行讨论.涉及到的内容包括:1. 生产/消费者模型2. 生产/消费者实现 转载请注明出处:http://www.cnblogs.com/skywang12345/p ...
随机推荐
- 三、TestNG的基本注解(1)
Before类别和After类别注解 举例说明 创建两个TestNGAnnotationTest.java和TestNGAnnotationTest2.java的类 TestNGAnnotationT ...
- MobaXterm无法退格删除
MobaXterm退格删除出现^H,总是要取消输入重新敲语句,很麻烦 解决方法:打开MobaXterm-->settings-->Configuration,把"Backspac ...
- Linux下MySQL数据库的备份与恢复
Linux下MySQL数据库的备份与恢复 作者:Grey 原文地址: Github 语雀 博客园 基于版本 MySQL5.7 Deepin Linux 15.11 xtrabackup-2.4.18 ...
- 软件工程与UML的第一次课
| 这个作业属于哪个课程 | https://edu.cnblogs.com/campus/fzzcxy/2018SE1 | | 这个作业要求在哪里 | https://edu.cnblogs.com ...
- JeecgBoot table 渲染图片
使用jeecgboot框架,在table列表显示图片 使用Column 的customRender属性 通过以上设置,就会在列表页显示图片了
- TP学习第二天—
一.控制器和对应方法的创建 2.路由解析 传统的路由解析方法: 具体url地址模式设置(配置文件在 ThinkPHP/Conf/convertion.php) 停到了之前的 黑马传智的 TP课,换了个 ...
- Jetty web server 远程共享缓冲区泄漏漏洞学习
https://www.secpulse.com/archives/4911.html https://www.tiejiang.org/11628.html http://blog.gdssecur ...
- HCIP -- OSPF 总结
OSPF:Open Shortest path First :开方式最短路径优先 一.基础知识: 1.使用范围:IGP 2.协议算法特点:链路状态型路由协议,SPF算法 3.协议是否传递网络掩码:是 ...
- 数据库SQL调优的几种方式 EFcore读的情况下使用 AsNoTracking非跟踪查询
不要用GUID 当主键 没有规律 可以用雪花ID DBA 优化法则 硬件资源是根本,DBA是为了充分利用硬件资源 一般清空下可以不使用外键 可以提高性能 合理使用临时表 临时表分页; 一些查询语句加w ...
- vs2010新特性
下面列出了一些新的功能:1.代码编辑器新的代码编辑器使代码更易于阅读.可以通过按 CTRL 并滚动鼠标轮放大文本.此外,单击 Visual C# 或 Visual Basic 中的符号时该符号的所有实 ...