除了使用础的数据类型string等,Hive中的列支持使用struct, map, array集合数据类型。

数据类型 描述 语法示例
STRUCT 和C语言中的struct或者"对象"类似,都可以通过"点"符号访问元素内容。 struct{'John', 'Doe'}
MAP MAP是一组键-值对元素集合,使用key可以访问元素。 map('fisrt', 'John', 'last', 'Doe')
ARRAY 数组是一组具有相同数据类型和名称的变量的集合。 Array('John', 'Doe')

1. Array的使用

创建数据库表,以array作为数据类型

create table  person(name string,work_locations array<string>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ',';

数据

biansutao beijing,shanghai,tianjin,hangzhou
linan changchu,chengdu,wuhan

入库数据

LOAD DATA LOCAL INPATH '/home/hadoop/person.txt' OVERWRITE INTO TABLE person;

查询

hive> select * from person;
biansutao ["beijing","shanghai","tianjin","hangzhou"]
linan ["changchu","chengdu","wuhan"]
Time taken: 0.355 seconds
hive> select name from person;
linan
biansutao
Time taken: 12.397 seconds
hive> select work_locations[0] from person;
changchu
beijing
Time taken: 13.214 seconds
hive> select work_locations from person;
["changchu","chengdu","wuhan"]
["beijing","shanghai","tianjin","hangzhou"]
Time taken: 13.755 seconds
hive> select work_locations[3] from person;
NULL
hangzhou
Time taken: 12.722 seconds
hive> select work_locations[4] from person;
NULL
NULL
Time taken: 15.958 seconds

2. Map 的使用

创建数据库表

create table score(name string, score map<string,int>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ','
MAP KEYS TERMINATED BY ':';

要入库的数据

biansutao '数学':80,'语文':89,'英语':95
jobs '语文':60,'数学':80,'英语':99

入库数据

LOAD DATA LOCAL INPATH '/home/hadoop/score.txt' OVERWRITE INTO TABLE score;

查询

hive> select * from score;
biansutao {"数学":80,"语文":89,"英语":95}
jobs {"语文":60,"数学":80,"英语":99}
Time taken: 0.665 seconds
hive> select name from score;
jobs
biansutao
Time taken: 19.778 seconds
hive> select t.score from score t;
{"语文":60,"数学":80,"英语":99}
{"数学":80,"语文":89,"英语":95}
Time taken: 19.353 seconds
hive> select t.score['语文'] from score t;
60
89
Time taken: 13.054 seconds
hive> select t.score['英语'] from score t;
99
95
Time taken: 13.769 seconds

修改map字段的分隔符

Storage Desc Params:
colelction.delim ##
field.delim \t
mapkey.delim =
serialization.format \t

可以通过desc formatted tableName查看表的属性。

hive-2.1.1中,可以看出colelction.delim,这里是colelction而不是collection,hive里面这个单词写错了,所以还是要按照错误的来。

alter table t8 set serdepropertyes('colelction.delim'=',');

3. Struct 的使用

创建数据表

CREATE TABLE test(id int,course struct<course:string,score:int>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ',';

数据

1 english,80
2 math,89
3 chinese,95

入库

LOAD DATA LOCAL INPATH '/home/hadoop/test.txt' OVERWRITE INTO TABLE test;

查询

hive> select * from test;
OK
1 {"course":"english","score":80}
2 {"course":"math","score":89}
3 {"course":"chinese","score":95}
Time taken: 0.275 seconds
hive> select course from test;
{"course":"english","score":80}
{"course":"math","score":89}
{"course":"chinese","score":95}
Time taken: 44.968 seconds
select t.course.course from test t;
english
math
chinese
Time taken: 15.827 seconds
hive> select t.course.score from test t;
80
89
95
Time taken: 13.235 seconds

4. 不支持组合的复杂数据类型

我们有时候可能想建一个复杂的数据集合类型,比如下面的a字段,本身是一个Map,它的key是string类型的,value是Array集合类型的。

建表

create table test1(id int,a MAP<STRING,ARRAY<STRING>>)
row format delimited fields terminated by '\t'
collection items terminated by ','
MAP KEYS TERMINATED BY ':';

导入数据

1 english:80,90,70
2 math:89,78,86
3 chinese:99,100,82 LOAD DATA LOCAL INPATH '/home/hadoop/test1.txt' OVERWRITE INTO TABLE test1;

这里查询出数据:

hive> select * from test1;
OK
1 {"english":["80"],"90":null,"70":null}
2 {"math":["89"],"78":null,"86":null}
3 {"chinese":["99"],"100":null,"82":null}

可以看到,已经出问题了,我们意图是想"english":["80", "90", "70"],实际上把90和70也当作Map的key了,value值都是空的。分析一下我们的建表语句,collection items terminated by ','制定了集合类型(map, struct, array)数据元素之间分隔符是", ",实际上map也是属于集合的,那么也会按照逗号分出3个key-value对;由于MAP KEYS TERMINATED BY ':'定义了map中key-value的分隔符是":",第一个“english”可以准确识别,后面的直接把value置为"null"了。

Hive中的集合数据类型的更多相关文章

  1. hive中parquet存储格式数据类型timestamp的问题

    当存储格式为parquet 且 字段类型为 timestamp 且 数据用hive执行sql写入. 这样的字段在使用impala读取时会少8小时.建议存储为sequence格式或者将字段类型设置为st ...

  2. Hive集合数据类型

    Hive的列除了支持基本的数据类型外,还支持使用Struct.Map和Array三种集合数据类型. 假设某表有如下一行,我们用JSON格式来表示其数据结构.在Hive下访问的格式为 { "n ...

  3. Hive中的数据类型以及案例实操

    @ 目录 基本数据类型 集合数据类型 案例实操 基本数据类型 对于Hive的String类型相当于数据库的varchar类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符,理论上它 ...

  4. Hive中集合类型

    Hive中集合类型 创建表,集合是以 - 分割的 数据文件 加载数据 查询数据 查询数组中第一个字段 再建一个表,使用map 查看数据文件 加载数据 查询数据 查询键值 创建表,struct类型 查看 ...

  5. hadoop之hive集合数据类型

    除了string,boolean,date等基本数据类型之外,hive还支持三种高级数据类型: 1.ARRAY ARRAY类型是由一系列相同数据类型的元素组成,这些元素可以通过下标来访问.比如有一个A ...

  6. 面试官:Redis中集合数据类型的内部实现方式是什么?

    虽然已经是阳春三月,但骑着共享单车骑了这么远,还有有点冷的.我搓了搓的被冻的麻木的手,对着前台的小姐姐说:"您好,我是来面试的."小姐姐问:"您好,您叫什么名字?&quo ...

  7. Hive(五)数据类型与库表操作以及中文乱码

    一.数据类型 1.基本数据类型 Hive 支持关系型数据中大多数基本数据类型 类型 描述 示例 boolean true/false TRUE tinyint 1字节的有符号整数 -128~127 1 ...

  8. Hive中的数据倾斜

    Hive中的数据倾斜 hive 1. 什么是数据倾斜 mapreduce中,相同key的value都给一个reduce,如果个别key的数据过多,而其他key的较少,就会出现数据倾斜.通俗的说,就是我 ...

  9. Hive的基本操作和数据类型

    Hive的基本操作 1.启动Hive bin/hive 2.查看数据库 hive>show databases; 3. 打开默认数据库 hive>use default; 4.显示defa ...

随机推荐

  1. MathType如何输入微分上的点

    作为被老师们青睐的公式编辑器,MathType可以帮助插入各种数学符号和编辑数学公式,从而提高数学试卷的编写效率.但是作为新手,在编辑公式的时候难免有困难,比如就有人问:如何输入微分上的点?其实也是有 ...

  2. php 缩略图封装的方法

    /** * PHP生成缩略图 * @param $basepath /原文件地址 * @param $des_w /缩略图的宽 * @param $des_h /缩略图的高 * @param $sty ...

  3. Contest 1428

    A 移动次数是 \(\left|x_1-x_2\right|+\left|y_1-y_2\right|\). 如果 \(x_1\not=x_2\) 且 \(y_1\not=y_2\) 说明要换方向,两 ...

  4. C语言入门最后一阶,掌握这门知识,你就进入提高阶段~

    哈喽,伙伴们,我们前面讲了C语言的发展史,基本数据类型,变量与常量,表达式,基本结构等等,今天是作为C语言基础入门的最后一个阶段:输入与输出. 以上这些知识你能够掌握好,就可以开始进入C语言的进阶提高 ...

  5. Python学习第四天----模块儿导入

    1.命名空间 模块儿的名字加上文件的名字,就是命名空间. python如何区分一个普通的文件夹和一个包的? 在一个文件夹下有一个特定的文件__init__.py,此时这个文件夹就是一个包.(前后各两个 ...

  6. 01_Activity生命周期及传递数据

    1. Activity的生命周期: 2. Activity启动另一个Activity,并传递数据: package com.example.activitydemo; import android.a ...

  7. centos7安装Python的虚拟环境

    1. 安装virtualenv.virtualenvwrapper # pip3 install virtualenv # pip3 install virtualenvwrapper 2. 进入.b ...

  8. 【MySQL篇】Navicat导入SQL文件报错终极解决方案

    面对大数据库文件(一般50M以上),使用Navicat导入的时候容易出现[ERR]2006等报错问题,此文提供了几种办法,包括修改MySQL的配置参数在网上也有很多详细教程介绍过,但此文精彩处在于前面 ...

  9. 基于CFSSL工具创建CA证书,服务端证书,客户端证书

    背景描述 在局域网中部署组件时,想要通过证书来实现身份的认证,确保通信的安全性,可以通过cfssl工具来进行CA证书,服务端证书,客户端证书的创建. 目录 背景描述 部署cfssl工具 下载,上传cf ...

  10. 使用PyQt开发图形界面Python应用专栏目录

    ☞ ░ 前往老猿Python博文目录 ░ 本专栏为收费专栏的文章目录,对应的免费专栏为<PyQt入门知识目录>,两个专栏都为基于PyQt的Python图形界面开发基础教程,只是收费专栏中的 ...