题意

给一个一开始没有点的图,有 \(q\) 次操作,每次为加点连边或者查询一个点到连通块内所有点的距离最大值。

\(\texttt{Data Range}:1\leq q\leq 10^5\)

题解

「雅礼集训 2017 Day5」远行很像的一个题,都是 LCT 维护直径。

注意到树上一个点到其他点的距离最大值只可能在直径的两个端点处取到,而且又存在加边操作,所以可以直接使用 LCT 来维护。

当合并两个连通块的时候需要在两个连通块各自的直径端点中选两个成为新的直径,需要讨论 \(6\) 种情况,这个暴力搞就行了。

但是这个题不用这么麻烦。因为每一次合并的一边是一个点,所以只需要讨论两次就好了。

同时,维护直径的两个端点和直径的距离可以使用并查集来维护,查询两点距离的话就先 split 把两个点的路径拉出来放到同一个 Splay 上,再用根节点的大小减 \(1\) 即可。

代码

#include<bits/stdc++.h>
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=3e5+51;
ll n,c,d,x,fx,fy,mx,lx,rx;
char op;
ll ffa[MAXN],l[MAXN],r[MAXN],dist[MAXN];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
inline ll find(ll x)
{
return x==ffa[x]?x:ffa[x]=find(ffa[x]);
}
namespace LCT{
struct Node{
ll fa,rv,sz;
ll ch[2];
};
struct LinkCutTree{
Node nd[MAXN];
ll st[MAXN];
#define ls nd[x].ch[0]
#define rs nd[x].ch[1]
inline bool nroot(ll x)
{
return nd[nd[x].fa].ch[0]==x||nd[nd[x].fa].ch[1]==x;
}
inline void update(ll x)
{
nd[x].sz=nd[ls].sz+nd[rs].sz+1;
}
inline void reverse(ll x)
{
swap(ls,rs),nd[x].rv^=1;
}
inline void spread(ll x)
{
if(nd[x].rv)
{
ls?reverse(ls):(void)1,rs?reverse(rs):(void)1;
nd[x].rv=0;
}
}
inline void rotate(ll x)
{
ll fa=nd[x].fa,gfa=nd[fa].fa;
ll dir=nd[fa].ch[1]==x,son=nd[x].ch[!dir];
if(nroot(fa))
{
nd[gfa].ch[nd[gfa].ch[1]==fa]=x;
}
nd[x].ch[!dir]=fa,nd[fa].ch[dir]=son;
if(son)
{
nd[son].fa=fa;
}
nd[fa].fa=x,nd[x].fa=gfa,update(fa);
}
inline void splay(ll x)
{
ll fa=x,gfa,cur=0;
st[++cur]=fa;
while(nroot(fa))
{
st[++cur]=fa=nd[fa].fa;
}
while(cur)
{
spread(st[cur--]);
}
while(nroot(x))
{
fa=nd[x].fa,gfa=nd[fa].fa;
if(nroot(fa))
{
rotate((nd[fa].ch[0]==x)^(nd[gfa].ch[0]==fa)?x:fa);
}
rotate(x);
}
update(x);
}
inline void access(ll x)
{
for(register int i=0;x;x=nd[i=x].fa)
{
splay(x),rs=i,update(x);
}
}
inline void makeRoot(ll x)
{
access(x),splay(x),reverse(x);
}
inline ll findRoot(ll x)
{
access(x),splay(x);
while(ls)
{
spread(x),x=ls;
}
return x;
}
inline void split(ll x,ll y)
{
makeRoot(x),access(y),splay(y);
}
inline void link(ll x,ll y)
{
makeRoot(x);
if(findRoot(y)!=x)
{
nd[x].fa=y;
}
}
#undef ls
#undef rs
};
}
LCT::LinkCutTree lct;
inline ll getDist(ll x,ll y)
{
lct.split(x,y);
return lct.nd[y].sz-1;
}
int main()
{
n=read();
for(register int i=1;i<=n;i++)
{
ffa[i]=l[i]=r[i]=i,lct.nd[i].sz=1;
}
for(register int i=0;i<n;i++)
{
cin>>op,x=read();
if(op=='B')
{
++c;
if(x==-1)
{
continue;
}
fx=c,fy=find(x),mx=dist[fx],lx=l[fx],rx=r[fx];
if(mx<dist[fy])
{
lx=l[fy],rx=r[fy],mx=dist[fy];
}
lct.link(c,x);
if((d=getDist(l[fx],l[fy]))>mx)
{
mx=d,lx=l[fx],rx=l[fy];
}
if((d=getDist(l[fx],r[fy]))>mx)
{
mx=d,lx=l[fx],rx=r[fy];
}
l[fx]=lx,r[fx]=rx,dist[fx]=mx,ffa[fy]=fx;
}
if(op=='Q')
{
fx=find(x);
printf("%d\n",max(getDist(x,l[fx]),getDist(x,r[fx])));
}
}
}

Luogu P4271 [USACO18FEB]New Barns P的更多相关文章

  1. P4271 [USACO18FEB]New Barns

    题目 P4271 [USACO18FEB]New Barns 做法 这题很长见识啊!! 知识点:两棵树\((A,B)\)联通后,新树的径端点为\(A\)的径端点与\(B\)的径端点的两点 不断加边,那 ...

  2. 线段树||BZOJ5194: [Usaco2018 Feb]Snow Boots||Luogu P4269 [USACO18FEB]Snow Boots G

    题面:P4269 [USACO18FEB]Snow Boots G 题解: 把所有砖和靴子排序,然后依次处理每一双靴子,把深度小于等于它的砖块都扔线段树里,问题就转化成了求线段树已有的砖块中最大的砖块 ...

  3. 题解【[USACO18FEB]New Barns 】

    浅谈一下对于这题做完之后的感受(不看题解也是敲不出来啊qwq--) 题意翻译 Farmer John注意到他的奶牛们如果被关得太紧就容易吵架,所以他想开放一些新的牛棚来分散她们. 每当FJ建造一个新牛 ...

  4. [usaco18Feb] New Barns

    题意 每次新建一个节点,并与一个已知节点连边.(或者不连).多次询问以某个已知点点出发的最远路径长度. 分析 显然,在任何时候图都是一个森林.由树的直径算法可知,与某点最远距的点必然是树的直径的一段. ...

  5. Luogu P4270 [USACO18FEB]Cow Gymnasts (打表找规律)

    题意 传送门 题解 首先我们不竖着看奶牛而是横着看.从下往上把奶牛叫做处于第0,1,2...0,1,2...0,1,2...层.那么相当于第000层的不动,第111层的平移一格,第222层的平移222 ...

  6. LUOGU P4088 [USACO18FEB]Slingshot(线段树)

    传送门 解题思路 推了推式子发现是个二维数点,想了想似乎排序加线段树难写,就写了个树套树,结果写完看见空间才\(128M\)..各种奇技淫巧卡空间还是\(MLE\)到天上.后来只好乖乖的写排序+线段树 ...

  7. LCT[Link-Cut-Tree学习笔记]

    部分摘抄于 FlashHu candy99 所以文章篇幅较长 请有足够的耐心(不是 其实不用学好splay再学LCT的-/kk (至少现在我平衡树靠fhq) 如果学splay的话- 也许我菜吧-LCT ...

  8. 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  9. Luogu 魔法学院杯-第二弹(萌新的第一法blog)

    虽然有点久远  还是放一下吧. 传送门:https://www.luogu.org/contest/show?tid=754 第一题  沉迷游戏,伤感情 #include <queue> ...

随机推荐

  1. shiro安全框架和spring整合

    上干货......... 整合spring的配置文件 <?xml version="1.0" encoding="UTF-8"?><beans ...

  2. 性能测试Jmeter安装

    一. Jmeter下载地址: http://jmeter.apache.org/download_jmeter.cgi   二. JDK下载地址: https://www.oracle.com/tec ...

  3. training set, validation set, test set的区别

    training set: 用来训练模型 validation set : 用来做model selection test set : 用来评估所选出来的model的实际性能 我们知道,在做模型训练之 ...

  4. 036 01 Android 零基础入门 01 Java基础语法 04 Java流程控制之选择结构 03 嵌套if结构

    036 01 Android 零基础入门 01 Java基础语法 04 Java流程控制之选择结构 03 嵌套if结构 本文知识点:Java中的嵌套if结构 什么是嵌套if结构? 概念: 嵌套if结构 ...

  5. npm包管理器报错-npm ERR! Response timeout while trying to fetch https://registry.npmjs.org/@XXX(over 30000ms)

    由于这两天买的新电脑在短期内频频蓝屏.卡机,不得不把自己其他的本本拿出来换上,但是程序员换电脑是真的痛苦,其他不说就说一个配环境 真的折腾哈 我是一名前端菜鸟,现在自己的本本上使用的是npm包管理工具 ...

  6. TP5隐藏入口文件

    1,进入根目录,打开public文件夹,里面有个.htaccess文件 2,将这段代码改成?s= 3,不修改该文件,想要隐藏入口文件则会报错 4,改了文件之后是 5,改了入口文件为了隐藏  .php

  7. js获取foreach循环选中的值

    一,循环出来的值,通过checked选中,获取到value值 二,定义一个空数组,用push将数据保存在数组里面 以上操作便可以进行虎丘选中的值了

  8. UDP协议网络Socket编程(java实现C/S通信案例)

    我的博客园:https://www.cnblogs.com/chenzhenhong/p/13825286.html 我的CSDN博客:https://blog.csdn.net/Charzous/a ...

  9. 算出cron表达式接下来几次执行时间

    目录 1.使用cron库 2.总结 1.使用cron库 需要使用的go库:[点击跳转]. 具体使用方法可以参照例子使用,下面主要实现计算接下来几次cron表达式执行时间. package main i ...

  10. 例题3-3 回文词(Palindromes, UVa401)

    输入一个字符串,判断它是否为回文串以及镜像串.输入字符串保证不含数字0.所谓 回文串,就是反转以后和原串相同,如abba和madam.所有镜像串,就是左右镜像之后和原串相同,如2S和3AIAE.注意, ...