本篇文章继续介绍Java 8的另一个新特性——Stream API。新增的Stream API与InputStreamOutputStream是完全不同的概念,Stream API是对Java中集合操作的增强,可以利用它进行各种过滤、排序、分组、聚合等操作。Stream API配合Lambda表达式可以加大的提高代码可读性和编码效率,Stream API也支持并行操作,我们不用再花费很多精力来编写容易出错的多线程代码了,Stream API已经替我们做好了,并且充分利用多核CPU的优势。借助Stream API和Lambda,开发人员可以很容易的编写出高性能的并发处理程序。

Stream API简介

Stream API是Java 8中加入的一套新的API,主要用于处理集合操作,不过它的处理方式与传统的方式不同,称为“数据流处理”。流(Stream)类似于关系数据库的查询操作,是一种声明式操作。比如要从数据库中获取所有年龄大于20岁的用户的名称,并按照用户的创建时间进行排序,用一条SQL语句就可以搞定,不过使用Java程序实现就会显得有些繁琐,这时候可以使用流:

List<String> userNames = users.stream()
.filter(user -> user.getAge() > 20)
.sorted(comparing(User::getCreationDate))
.map(User::getUserName)
.collect(toList());

可以把流跟集合做一个比较。在Java中,集合是一种数据结构,或者说是一种容器,用于存放数据,流不是容器,它不关心数据的存放,只关注如何处理。可以把流当做是Java中的Iterator,不过它比Iterator强大多了。

流与集合另一个区别在于他们的遍历方式,遍历集合通常使用for-each方式,这种方式称为外部迭代,而流使用内部迭代方式,也就是说它帮你把迭代的工作做了,你只需要给出一个函数来告诉它接下来要干什么:

// 外部迭代
List<String> list = Arrays.asList("A", "B", "C", "D");
for (String str : list) {
System.out.println(str);
} // 内部迭代
list.stream().forEach(System.out::println);

在这个大数据的时代,数据变得越来越多样化,很多时候我们会面对海量数据,并对其做一些复杂的操作(比如统计,分组),依照传统的遍历方式(for-each),每次只能处理集合中的一个元素,并且是按顺序处理,这种方法是极其低效的。你也许会想到并行处理,但是编写多线程代码并非易事,很容易出错并且维护困难。不过在Java 8之后,你可以使用Stream API来解决这一问题。

Stream API将迭代操作封装到了内部,它会自动的选择最优的迭代方式,并且使用并行方式处理时,将集合分成多段,每一段分别使用不同的线程处理,最后将处理结果合并输出。

需要注意的是,流只能遍历一次,遍历结束后,这个流就被关闭掉了。如果要重新遍历,可以从数据源(集合)中重新获取一个流。如果你对一个流遍历两次,就会抛出java.lang.IllegalStateException异常:

List<String> list = Arrays.asList("A", "B", "C", "D");
Stream<String> stream = list.stream();
stream.forEach(System.out::println);
stream.forEach(System.out::println); // 这里会抛出java.lang.IllegalStateException异常,因为流已经被关闭

流通常由三部分构成:

  1. 数据源:数据源一般用于流的获取,比如本文开头那个过滤用户的例子中users.stream()方法。
  2. 中间处理:中间处理包括对流中元素的一系列处理,如:过滤(filter()),映射(map()),排序(sorted())。
  3. 终端处理:终端处理会生成结果,结果可以是任何不是流值,如List<String>;也可以不返回结果,如stream.forEach(System.out::println)就是将结果打印到控制台中,并没有返回。

创建流

创建流的方式有很多,具体可以划分为以下几种:

由值创建流

使用静态方法Stream.of()创建流,该方法接收一个变长参数:

Stream<Stream> stream = Stream.of("A", "B", "C", "D");

也可以使用静态方法Stream.empty()创建一个空的流:

Stream<Stream> stream = Stream.empty();

由数组创建流

使用静态方法Arrays.stream()从数组创建一个流,该方法接收一个数组参数:

String[] strs = {"A", "B", "C", "D"};
Stream<Stream> stream = Arrays.stream(strs);

通过文件生成流

使用java.nio.file.Files类中的很多静态方法都可以获取流,比如Files.lines()方法,该方法接收一个java.nio.file.Path对象,返回一个由文件行构成的字符串流:

Stream<String> stream = Files.lines(Paths.get("text.txt"), Charset.defaultCharset());

通过函数创建流

java.util.stream.Stream中有两个静态方法用于从函数生成流,他们分别是Stream.generate()Stream.iterate()

// iteartor
Stream.iterate(0, n -> n + 2).limit(51).forEach(System.out::println); // generate
Stream.generate(() -> "Hello Man!").limit(10).forEach(System.out::println);

第一个方法会打印100以内的所有偶数,第二个方法打印10个Hello Man!。值得注意的是,这两个方法生成的流都是无限流,没有固定大小,可以无穷的计算下去,在上面的代码中我们使用了limit()来避免打印无穷个值。

一般来说,iterate()用于生成一系列值,比如生成以当前时间开始之后的10天的日期:

Stream.iterate(LocalDate.now(), date -> date.plusDays(1)).limit(10).forEach(System.out::println);

generate()方法用于生成一些随机数,比如生成10个UUID:

Stream.generate(() -> UUID.randomUUID().toString()).limit(10).forEach(System.out::println);

使用流

Stream接口中包含许多对流操作的方法,这些方法分别为:

  • filter():对流的元素过滤
  • map():将流的元素映射成另一个类型
  • distinct():去除流中重复的元素
  • sorted():对流的元素排序
  • forEach():对流中的每个元素执行某个操作
  • peek():与forEach()方法效果类似,不同的是,该方法会返回一个新的流,而forEach()无返回
  • limit():截取流中前面几个元素
  • skip():跳过流中前面几个元素
  • toArray():将流转换为数组
  • reduce():对流中的元素归约操作,将每个元素合起来形成一个新的值
  • collect():对流的汇总操作,比如输出成List集合
  • anyMatch():匹配流中的元素,类似的操作还有allMatch()noneMatch()方法
  • findFirst():查找第一个元素,类似的还有findAny()方法
  • max():求最大值
  • min():求最小值
  • count():求总数

下面逐一介绍这些方法的用法。

过滤和排序

Stream.of(1, 8, 5, 2, 1, 0, 9, 2, 0, 4, 8)
.filter(n -> n > 2) // 对元素过滤,保留大于2的元素
.distinct() // 去重,类似于SQL语句中的DISTINCT
.skip(1) // 跳过前面1个元素
.limit(2) // 返回开头2个元素,类似于SQL语句中的SELECT TOP
.sorted() // 对结果排序
.forEach(System.out::println);

查找和匹配

Stream中提供的查找方法有anyMatch()allMatch()noneMatch()findFirst()findAny(),这些方法被用来查找或匹配某些元素是否符合给定的条件:

// 检查流中的任意元素是否包含字符串"Java"
boolean hasMatch = Stream.of("Java", "C#", "PHP", "C++", "Python")
.anyMatch(s -> s.equals("Java")); // 检查流中的所有元素是否都包含字符串"#"
boolean hasAllMatch = Stream.of("Java", "C#", "PHP", "C++", "Python")
.allMatch(s -> s.contains("#")); // 检查流中的任意元素是否没有以"C"开头的字符串
boolean hasNoneMatch = Stream.of("Java", "C#", "PHP", "C++", "Python")
.noneMatch(s -> s.startsWith("C")); // 查找元素
Optional<String> element = Stream.of("Java", "C#", "PHP", "C++", "Python")
.filter(s -> s.contains("C"))
// .findFirst() // 查找第一个元素
.findAny(); // 查找任意元素

注意最后一行代码的返回类型,是一个Optional<T>类(java.util.Optional),它一个容器类,代表一个值存在或不存在。上面的代码中,findAny()可能什么元素都没找到。Java 8的库设计人员引入了Optional<T>,这样就不用返回众所周知容易出问题的null了。有关Optional<T>类的详细用法,请阅读:使用Java8中的Optional类来消除代码中的null检查

实际上测试结果发现,findFirst()findAny()返回的都是第一个元素,那么两者之间到底有什么区别?通过查看javadoc描述,大致意思是findAny()是为了提高并行操作时的性能,如果没有特别需要,还是建议使用findAny()方法。

归约

归约操作就是将流中的元素进行合并,形成一个新的值,常见的归约操作包括求和,求最大值或最小值。归约操作一般使用reduce()方法,与map()方法搭配使用,可以处理一些很复杂的归约操作。

// 获取流
List<Book> books = Arrays.asList(
new Book("Java编程思想", "Bruce Eckel", "机械工业出版社", 108.00D),
new Book("Java 8实战", "Mario Fusco", "人民邮电出版社", 79.00D),
new Book("MongoDB权威指南(第2版)", "Kristina Chodorow", "人民邮电出版社", 69.00D)
); // 计算所有图书的总价
Optional<Double> totalPrice = books.stream()
.map(Book::getPrice)
.reduce((n, m) -> n + m); // 价格最高的图书
Optional<Book> expensive = books.stream().max(Comparator.comparing(Book::getPrice));
// 价格最低的图书
Optional<Book> cheapest = books.stream().min(Comparator.comparing(Book::getPrice));
// 计算总数
long count = books.stream().count()

在计算图书总价的时候首先使用map()方法得到所有图书价格的流,然后再使用reduce()方法进行归约计算。与map()方法类似的还有一个flatMap()flatMap()方法让你把一个流中的每个值都换成另一个流,然后把所有的流连接起来成为一个新的流。看看下面的代码:

List<String[]> result = Stream.of("Hello Man")
.map(s -> s.split(""))
.collect(Collectors.toList());

上面代码返回的结果是一个List<String[]>类型,也就是[["H", "e", "l", "l", "o"], ["M", "a", "n"]]这种结构,而我们想要的到["H", "e", "l", "l", "o", "M", "a", "n"]这种结构,这时候就需要使用flatMap()方法了:

List<String> result = Stream.of("Hello Man")
.map(s -> s.split(""))
.flatMap(Arrays::stream)
.collect(Collectors.toList());

使用flatMap()方法的效果是,各个数组并不是分别映射成一个流,而是映射成流的内容。所有使用map(Arrays::stream)时生成的单个流都被合并起来,也就是对流扁平化操作。

数据收集

前面两部分内容分别为流式数据处理的前两个步骤:从数据源创建流、使用流进行中间处理。下面我们介绍流式数据处理的最后一个步骤——数据收集。

数据收集是流式数据处理的终端处理,与中间处理不同的是,终端处理会消耗流,也就是说,终端处理之后,这个流就会被关闭,如果再进行中间处理,就会抛出异常。数据收集主要使用collect方法,该方法也属于归约操作,像reduce()方法那样可以接收各种做法作为参数,将流中的元素累积成一个汇总结果,具体的做法是通过定义新的Collector接口来定义的。

在前面部分的例子中使用收集器(Collector)是由java.util.stream.Collectors工具类中的toList()方法提供,Collectors类提供了许多常用的方法用于处理数据收集,常见的有归约、汇总、分组等。

归约和汇总

我们使用前面归约操作中计算图书总价,最大值,最小值,输入总数那个例子来看看收集器如何进行上述归约操作:

// 求和
long count = books.stream().collect(counting()); // 价格最高的图书
Optional<Book> expensive = books.stream().collect(maxBy(comparing(Book::getPrice))); // 价格最低的图书
Optional<Book> cheapest = books.stream().collect(minBy(comparing(Book::getPrice)));

上面的代码假设你已经使用静态导入了CollectorsComparator两个类,这样你就不用再去写Collectors.counting()Comparator.comparing()这样的代码了:

import static java.util.stream.Collectors.*;
import static java.util.Comparator.*;

Collectors工具类为我们提供了用于汇总的方法,包括summarizingInt()summarizingLong()summarizingDouble(),由于图书的价格为Double类型,所以我们使用summarizingDouble()方法进行汇总。该方法会返回一个DoubleSummaryStatistics对象,包含一系列归约操作的方法,如:汇总、计算平均数、最大值、最小值、计算总数:

DoubleSummaryStatistics dss = books.stream().collect(summarizingDouble(Book::getPrice));
double sum = dss.getSum(); // 汇总
double average = dss.getAverage(); // 求平均数
long count = dss.getCount(); // 计算总数
double max = dss.getMax(); // 最大值
double min = dss.getMin(); // 最小值

Collectors类还包含一个joining()方法,该方法用于连接字符串:

String str = Stream.of("A", "B", "C", "D").collect(joining(","));

上面的代码用于将流中的字符串通过逗号连接成一个新的字符串。

分组

和关系数据库一样,流也提供了类似于数据库中GROUP BY分组的特性,由Collectors.groupingBy()方法提供:

Map<String, List<Book>> booksGroup = books.stream().collect(groupingBy(Book::getPublisher));

上面的代码按照出版社对图书进行分组,分组的结果是一个Map对象,Mapkey值是出版社的名称,value值是每个出版社分组对应的集合。分组方法groupingBy()接收一个Function接口作为参数,上面的例子中我们使用了方法引用传递了出版社作为分组的依据,但实际情况可能比这复杂,比如将价格在0-50之间的书籍分成一组,50-100之间的分成一组,超过100的分成一组,这时候,我们可以直接使用Lambda表达式来表示这个分组逻辑:

Map<String, List<Book>> booksGroup = books
.stream()
.collect(groupingBy(book -> {
if (book.getPrice() > 0 && book.getPrice() <= 50) {
return "A";
} else if (book.getPrice() > 50 && book.getPrice() <=100) {
return "B";
} else {
return "C";
}
}));

groupingBy()方法还支持多级分组,他有一个重载方法,除了接收一个Function类型的参数外,还接收一个Collector类型的参数:

Map<String, Map<String, List<Book>>> booksGroup = books.stream().collect(
groupingBy(Book::getPublisher, groupingBy(book -> {
if (book.getPrice() > 0 && book.getPrice() <= 50) {
return "A";
} else if (book.getPrice() > 50 && book.getPrice() <=100) {
return "B";
} else {
return "C";
}
}))
);

上面的代码将之前两个分组合并成一个,实现了多级分组,首先按照出版社进行分组,然后按照价格进行分组,返回类型是一个Map<String, Map<String, List<Book>>>groupingBy()的第二个参数可以是任意类型,只要是Collector接口的实例就可以,比如先分组,再统计数量:

Map<String, Long> countGroup = books.stream()
.collect(groupingBy(Book::getPublisher, counting()));

还可以在进行分组后获取每组中价格最高的图书:

Map<String, Book> expensiveGroup = books.stream()
.collect(groupingBy(Book::getPublisher, collectingAndThen(
maxBy(comparingDouble(Book::getPrice)),
Optional::get
)));

并行数据处理

在Java 7之前,处理并行数据集合非常麻烦,首先需要将一个庞大数据集合分成几个子集合;然后需要为每一个子集合编写多线程处理程序,还需要对他们做线程同步来避免访问共享变量导致处理结果不准确;最后,等待所有线程处理完毕后将处理结果合并。在Java 7之后新添加了一个fork/join的框架,让这一切变得更加简单。

并行流

并行流使用集合的parallelStream()方法可以获取一个并行流。Java内部会将流的内容分割成若干个子部分,然后将它们交给多个线程并行处理,这样就将工作的负担交给多核CPU的其他内核处理。

我们通过一个简单粗暴的例子演示并行流的处理性能。

假设有一个方法,接受一个数字n作为参数,返回从1到n的所有自然数之和:

通过传统的for循环方式实现:

public static long iterativeSum(long n) {
long result = 0;
for (long i = 1L; i <= n; i++) {
result += i;
}
return result;
}

使用流:

public static long sequentialSum(long n) {
return Stream.iterate(1L, i -> i + 1)
.limit(n)
.reduce(0L, Long::sum);
}

使用并行流

public static long parallelSum(long n) {
return Stream.iterate(1L, i -> i + 1)
.limit(n)
.parallel()
.reduce(0L, Long::sum);
}

使用LongStream.rangeClosed()方法

public static long rangedSum(long n) {
return LongStream.rangeClosed(1, n)
.reduce(0L, Long::sum);
}

再将rangeClosed()方法生成的流转化为并行流

public static long parallelRangedSum(long n) {
return LongStream.rangeClosed(1, n)
.parallel()
.reduce(0L, Long::sum);
}

经过测试

采用传统的for循环更快,因为它不用做任何自动拆箱/装箱操作,操作的都是基本类型

并行的执行效率比顺序执行还要慢,这个结果让人大跌眼镜。主要有两个原因:

  1. iterate()方法生成的对象是基本类型的包装类(也就是java.lang.Long类型),必须进行拆箱操作才能运算。
  2. iterate()方法不适合用并行流处理。

第一个原因容易理解,自动拆箱操作确实需要花费一定的时间,这从前一个例子可以看出来。

第二个原因中iterate()方法不适合用并行流处理,主要原因是iterate()方法内部机制的问题。iterate()方法每次执行都需要依赖前一次的结果,比如本次执行的输入值为10,这个输入值必须是前一次运算结果的输出,因此iterate()方法很难使用并行流分割成不同小块处理。实际上,上面的并行流程序还增加了顺序处理的额外开销,因为需要把每次操作执行的结果分别分配到不同的线程中。

使用LongStream.rangeClosed()方法,该方法弥补了上述例子的两个缺点,它生成的是基本类型而非包装类,不用拆箱操作就可以运算,并且,它生成的是有范围的数字,很容易拆分。如:生成1-20范围的数字可以拆分成1-10, 11-20。

更多关于流的使用欢迎大家讨论!

Java8中的Stream API的更多相关文章

  1. 【Java8新特性】面试官:谈谈Java8中的Stream API有哪些终止操作?

    写在前面 如果你出去面试,面试官问了你关于Java8 Stream API的一些问题,比如:Java8中创建Stream流有哪几种方式?(可以参见:<[Java8新特性]面试官问我:Java8中 ...

  2. 【Java8新特性】面试官问我:Java8中创建Stream流有哪几种方式?

    写在前面 先说点题外话:不少读者工作几年后,仍然在使用Java7之前版本的方法,对于Java8版本的新特性,甚至是Java7的新特性几乎没有接触过.真心想对这些读者说:你真的需要了解下Java8甚至以 ...

  3. Java8中的Stream流式操作 - 入门篇

    作者:汤圆 个人博客:javalover.cc 前言 之前总是朋友朋友的叫,感觉有套近乎的嫌疑,所以后面还是给大家改个称呼吧 因为大家是来看东西的,所以暂且叫做官人吧(灵感来自于民间流传的四大名著之一 ...

  4. java8新特性——Stream API

    Java8中有两大最为重要得改变,其一时Lambda表达式,另外就是 Stream API了.在前面几篇中简单学习了Lambda表达式得语法,以及函数式接口.本文就来简单学习一下Stream API( ...

  5. Java8新特性 - Stream API

    Stream是Java8中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找.过滤和映射数据等操作.使用Stream API对集合进行操作,就类似与使用SQL执行的数据库 ...

  6. Java8 新特性 Stream() API

    新特性里面为什么要加入流Steam() 集合是Java中使用最多的API,几乎每一个Java程序都会制造和处理集合.集合对于很多程序都是必须的,但是如果一个集合进行,分组,排序,筛选,过滤...这些操 ...

  7. java8中的stream().filter()的使用和Optional()

    转: https://www.cnblogs.com/yimiyan/p/5992440.html Optional: https://www.cnblogs.com/zhangboyu/p/7580 ...

  8. java8中的stream流遍历

    比较for循环.迭代器.java8Stream流遍历的不同 package cnom.test.testUtils; import java.io.Serializable; import java. ...

  9. Java8 新特性 Stream Api 之集合遍历

    前言 随着java版本的不断更新迭代,java开发也可以变得甜甜的,最新版本都到java11了,但是后面版本也是不在提供商用支持,需要收费,但是java8 依然是持续免费更新使用的,后面版本也更新很快 ...

随机推荐

  1. 使用 MySQLi 和 PDO 向 MySQL 插入数据

    PHP MySQL 插入数据 使用 MySQLi 和 PDO 向 MySQL 插入数据 在创建完数据库和表后,我们可以向表中添加数据. 以下为一些语法规则: PHP 中 SQL 查询语句必须使用引号 ...

  2. HTML <html> manifest 属性

    实例 带有缓存 manifest 的 HTML 文档(用于离线浏览): <!DOCTYPE HTML><html manifest="demo.appcache" ...

  3. PDO::inTransaction

    PDO::inTransaction — 检查是否在一个事务内(PHP 5 >= 5.3.3, Bundled pdo_pgsql) 说明 语法 bool PDO::inTransaction ...

  4. DB_LINK删除

    由于业务需求,对测试库数据进行模糊化.为保生产数据安全,先删db_link; 1.共有db_link删除: select 'drop public database link '||db_link|| ...

  5. Sharding-JDBC实现水平拆分-单库分表

    参考资料:猿天地   https://mp.weixin.qq.com/s/901rNhc4WhLCQ023zujRVQ 作者:尹吉欢 当单表的数量急剧上升,超过了1千万以上,这个时候就要对表进行水平 ...

  6. Android 生命周期,解决savedInstanceState一直为null的问题

    在此之前还是补充下关于监听器的两个要点:   向下一个活动传递数据 : button1.setOnClickListener(new View.OnClickListener() { @Overrid ...

  7. python4.1定义函数

    def add(a,b,c,d): e=a+b+c-d return e result=add(21,32,43,56)print("加和结果是:",result) def zzj ...

  8. python2.1 if-else条件语句:

    #案例:存款大于100万,买宝马:小于20万自行车! cunkuan=10#if判断条件,else:不满足if执行其他命令if cunkuan>100: print("可以买宝马,好开 ...

  9. JAVA程序设计环境

    JDK ,Java Development Kit(Java开发工具包) JRE ,Java Runtime Environment(Java运行时环境) SE   ,Standard Edition ...

  10. Unity 笔记

    摄像机 Main Camera 跟随主角移动,不看 UI 剧情摄像机 当进入剧情时,可以关闭 main camera,启用剧情摄像机,不看 UI UI 摄像机 看 UI Unity编辑器常用的sett ...