树上的等差数列 [树形dp]
树上的等差数列
题目描述
给定一棵包含 \(N\) 个节点的无根树,节点编号 \(1\to N\) 。其中每个节点都具有一个权值,第 \(i\) 个节点的权值是 \(A_i\) 。
小 \(Hi\) 希望你能找到树上的一条最长路径,满足沿着路径经过的节点的权值序列恰好构成等差数列。
输入格式
第一行包含一个整数 \(N\) 。
第二行包含 \(N\) 个整数 \(A_1, A_2, ... A_N\)。
以下 \(N-1\) 行,每行包含两个整数 \(U\) 和 \(V\) ,代表节点 \(U\) 和 \(V\) 之间有一条边相连。
输出格式
最长等差数列路径的长度
样例
样例输入
7
3 2 4 5 6 7 5
1 2
1 3
2 7
3 4
3 5
3 6
样例输出
4
数据范围与提示
对于 \(50\%\) 的数据,\(1 \leqslant N \leqslant 1000\)
对于 \(100\%\) 的数据,\(1 \leqslant N \leqslant 100000, 0 \leqslant A_i \leqslant 100000, 1 \leqslant U, V \leqslant N\)
分析
树形 \(dp\) 好题。
因为要求的是最长的等差序列,根节点不同,答案也可能不同,所以 \(dp\) 的状态转移就定义为 \(f[i][j]\) 表示 \(i\) 节点为根,公差为 \(j\) 时的最长的等差数列,不包括自己。那么我们就可以愉快的 \(dfs\) 来进行转移了。
我们记录一下他自己和他的父亲,避免出现死循环,每一次先 \(dfs\) 到儿子,递归上来,然后就处理出来了公差为 \(\Delta\) 的以儿子为根的所有长度,这时候我们只需要判断一下此时的 \(\Delta\) 值是否为 \(0\)。如果是,那么 \(ans\) 的转移应该是:
\]
因为此时 \(f[x][0]\) 存储的是其他儿子上最长链,所以需要加上当前儿子的最长链,因为我们的数组不保存自己,所以要加 \(2\) 。
其他情况就是直接更新 \(ans\) ,他的答案应该是 \(f[x][d] + f[x][-d] + 1\) ,因为他的父亲那里也可能会有链,公差为 \(-d\) 就是那个链,由于负数下标的问题,我们利用 \(map\) 来存储,然后轻松解决此题。
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<map>
#define re register
using namespace std;
const int maxn = 1e5+10;
map <int,int> mp[maxn];
struct Node{
int v,next;
}e[maxn<<1];
int w[maxn];
int ans = 0;
int head[maxn],tot;
void Add(int x,int y){//建边
e[++tot].v = y;
e[tot].next = head[x];
head[x] = tot;
}
inline int read(){//快读
int s = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){s=s*10+ch-'0';ch=getchar();}
return s * f;
}
inline void DP(int x,int fa){
for(int i=head[x];i;i=e[i].next){
int v = e[i].v;
if(v == fa)continue;//避免死循环
int d = w[v] - w[x];//计算公差
DP(v,x);
if(!d){//公差为0的情况
ans = max(ans,mp[x][0] + mp[v][0] + 2);
mp[x][0] = max(mp[x][0],mp[v][0] + 1);
}
else{//公差不为0
mp[x][d] = max(mp[x][d],mp[v][d] + 1);
ans = max(ans,mp[x][d] + mp[x][-d] + 1);
}
}
}
int main(){
freopen("C.in","r",stdin);
freopen("C.out","w",stdout);
int n =read();
for(re int i = 1;i<=n;++i){w[i]=read();}
for(re int i = 1;i< n;++i){
int x = read(),y = read();
Add(x,y);
Add(y,x);
}
DP(1,0);
printf("%d\n",ans);
}
树上的等差数列 [树形dp]的更多相关文章
- BZOJ_4033_[HAOI2015]树上染色_树形DP
BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...
- 2021.07.17 P3177 树上染色(树形DP)
2021.07.17 P3177 树上染色(树形DP) [P3177 HAOI2015]树上染色 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.dp思想是需要什么,维护 ...
- 【BZOJ4033】[HAOI2015] 树上染色(树形DP)
点此看题面 大致题意: 给你一棵点数为N的带权树,要你在这棵树中选择K个点染成黑色,并将其他的N-K个点染成白色.要求你求出黑点两两之间的距离加上白点两两之间距离的和的最大值. 树形\(DP\) 这道 ...
- 洛谷P3177 [HAOI2015]树上染色(树形dp)
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- bzoj 4033: [HAOI2015]树上染色【树形dp】
准确的说应该叫树上分组背包?并不知道我写的这个叫啥 设计状态f[u][j]为在以点u为根的子树中有j个黑点,转移的时候另开一个数组,不能在原数组更新(因为会用到没更新时候的状态),方程式为g[j+k] ...
- BZOJ 4033[HAOI2015] 树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3188 Solved: 1366[Submit][Stat ...
- [HAOI2015]树上染色(树形dp)
[HAOI2015]树上染色 题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所 ...
- 树上对抗搜索 - 树形dp
Alice and Bob are going on a trip. Alice is a lazy girl who wants to minimize the total travelling d ...
随机推荐
- go test 测试用例那些事(二) mock
关于go的单元测试,之前有写过一篇帖子go test测试用例那些事,但是没有说go官方的库mock,很有必要单独说一下这个库,和他的实现原理. mock主要的功能是对接口的模拟,需要在写代码的时候定义 ...
- 使用AB对Nginx压测和并发预估
简介 ab命令会创建多个并发访问线程,模拟多个访问者同时对某一URL地址进行访问.它的测试目标是基于URL的. # 1.ab每次只能测试一个URL,适合做重复压力测试 # 2.参数很多,可以支持添加c ...
- django表单使用
一.表单常用字段类型及参数 表单可以自动生成html代码,每一个字段默认有一个html显示样式,大多数默认为输入框. 字段相当于正则表达式的集合,能够对表单传入的数据进行校验,并且某一部分校验失败时会 ...
- java动态代理——字段和方法字节码的基础结构及Proxy源码分析三
前文地址:https://www.cnblogs.com/tera/p/13280547.html 本系列文章主要是博主在学习spring aop的过程中了解到其使用了java动态代理,本着究根问底的 ...
- STL入门--sort,lower_bound,upper_bound,binary_search及常见错误
首先,先定义数组 int a[10]; 这是今天的主角. 这四个函数都是在数组上操作的 注意要包含头文件 #include<algorithm> sort: sort(a,a+10) 对十 ...
- 使用types库修改函数
import types class ppp: pass p = ppp()#p为ppp类实例对象 def run(self): print("run函数") r = types. ...
- Debug HashMap
目录 1,HashMap面试必问 2,Debug源码的心得体会 3,JDK 1.7 3.1 用debug分析一个元素是如何加入到HashMap中的[jdk1.7] 3.2 用debug分析HashMa ...
- CF804D Expected diameter of a tree 树的直径 根号分治
LINK:Expected diameter of a tree 1e5 带根号log 竟然能跑过! 容易想到每次连接两个联通快 快速求出直径 其实是 \(max(D1,D2,f_x+f_y+1)\) ...
- luogu P4726 【模板】多项式指数函数 多项式 exp 牛顿迭代 泰勒展开
LINK:多项式 exp 做多项式的题 简直在嗑药. 前置只是 泰勒展开 这个东西用于 对于一个函数f(x) 我们不好得到 其在x处的取值. 所以另外设一个函数g(x) 来在x点处无限逼近f(x). ...
- LeetCode(1)---检查括号出现的合法性
题目: 检查字符串中"( )","[ ]","{ }" 的合法性,即是否成对出现 eg,如出现"[()]", ...