UVA10692:Huge Mods
题面
题意
输入正整数a1,a2,a3..an和模m,求a1a2...^an mod m
Sol
首先有$$
a^b\equiv
\begin{cases}
a^{b%\phi(p)}~gcd(a,p)=1\
a^bgcd(a,p)\neq1,b<\phi(p)\
a^{b%\phi(p)+\phi(p)}gcd(a,p)\neq1,b\geq\phi(p)
\end{cases}~~~(mod~p)
```cpp
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
IL ll Read(){
RG ll x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()){
if(c == '#') exit(0);
z = c == '-' ? -1 : 1;
}
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, m, a[20];
IL int Phi(RG int x){
RG int cnt = x;
for(RG int i = 2; i * i <= x; ++i){
if(x % i) continue;
while(!(x % i)) x /= i;
cnt -= cnt / i;
}
if(x > 1) cnt -= cnt / x;
return cnt;
}
IL int Pow(RG ll x, RG ll y, RG ll p){
RG int flg2 = 0, flg1 = 0; RG ll cnt = 1;
for(; y; y >>= 1){
if(y & 1) flg1 |= (cnt * x >= p || flg2), cnt = cnt * x % p;
flg2 |= (x * x >= p); x = x * x % p;
}
return cnt + flg1 * p;
}
IL int Calc(RG int x, RG int p){
if(x == n) return Pow(a[x], 1, p);
return Pow(a[x], Calc(x + 1, Phi(p)), p);
}
int main(RG int argc, RG char* argv[]){
for(RG int Case = 1; ; ++Case){
m = Read(); n = Read();
printf("Case #%d: ", Case);
for(RG int i = 1; i <= n; ++i) a[i] = Read();
printf("%d\n", Calc(1, m) % m);
}
return 0;
}
```\]
UVA10692:Huge Mods的更多相关文章
- uva 10692 Huge Mods 超大数取模
vjudge上题目链接:Huge Mods 附上截图: 题意不难理解,因为指数的范围太大,所以我就想是不是需要用求幂大法: AB % C = AB % phi(C) + phi(C) % C ( B ...
- uva 10692 - Huge Mods(数论)
题目链接:uva 10692 - Huge Mods 题目大意:给出一个数的次方形式,就它模掉M的值. 解题思路:依据剩余系的性质,最后一定是行成周期的,所以就有ab=abmod(phi[M])+ph ...
- UVA-10692 Huge Mods
题目大意:计算a1^a2^a3^a4......^an模m的值. 题目解析:幂取模运算的结果一定有周期.一旦找到周期就可把高次幂转化为低次幂.有降幂公式 (a^x)%m=(a^(x%phi(m)+ph ...
- Huge Mods UVA - 10692(指数循环节)
题意: 输入正整数a1,a2,a3..an和模m,求a1^a2^...^an mod m 解析: #include <iostream> #include <cstdio> # ...
- 【题解】Huge Mods UVa 10692 欧拉定理
题意:计算a1^( a2^( a3^( a4^( a5^(...) ) ) ) ) % m的值,输入a数组和m,不保证m是质数,不保证互质 裸的欧拉定理题目,考的就一个公式 a^b = a^( b % ...
- UVA 10692 Huge Mods(指数循环节)
指数循环节,由于a ^x = a ^(x % m + phi(m)) (mod m)仅在x >= phi(m)时成立,故应注意要判断 //by:Gavin http://www.cnblogs. ...
- 转:Webpack 指南(整理 草稿)
基础 安装 首先要安装 Node.js, Node.js 自带了软件包管理器 npm.用 npm 全局安装 Webpack: $ npm install webpack -g 通常我们会将 Webpa ...
- 前端优化:RequireJS Optimizer 的使用和配置方法
RequireJS Optimizer 是 RequireJS 自带的前端优化工具,可以对 RequireJS 项目中的 JavaScript & CSS 代码使用 UglifyJS 或者 C ...
- Jigsaw 项目:Java 模块系统新手引导
前言 随着 2017 年 10 月 Java 9 的发布,Java 能够使用模块系统了,但是中文互联网上的资料太少,许多关于 Java 模块系统的文章都只是介绍了模块系统的好处,或者给了一些毫无组织的 ...
随机推荐
- mysql查找以逗号分隔的值-find_in_set
有了FIND_IN_SET这个函数.我们可以设计一个如:一只手机即是智能机,又是Andriod系统的. 比如:有个产品表里有一个type字段,他存储的是产品(手机)类型,有 1.智能机,2.Andri ...
- 深入cocos2d-x中的touch事件
深入cocos2d-x中的touch事件 在文章cocos2d-x中处理touch事件中简单讨论过怎样处理touch事件, 那么今天来深入了解下cocos2d-x中是怎样分发touch事件的. 我们最 ...
- VS2015 (C/C++) 生成的程序,不能在server2008上运行
项目本来是为Linux下运行做的,但是客户环境需要在windows下运行,幸好用的一些库是跨平台的. 于是用vs2015编译. 然后就发现在2008上却运行时库,装了2015的运行时库后, 在运行,就 ...
- springMvc学习笔记一
什么是springmvc springmvc就是spring框架的一个模块 所以springmvc与spring之间无需通过中间整合层进行整合的. springmvc又是基于mvc的web框架 mv ...
- 剑指offer 丑数
思路:可以发现,每个丑数都是由以前的丑数得到.当前丑数一定是之前丑数能够得到的最小丑数. AC代码 class Solution { public: int GetUglyNumber_Solutio ...
- Java Enum总结
枚举类型 枚举类型是Java5新增的特性之一,枚举是一种特殊类型的类,其枚举的每一个值 都是该枚举类的一个实例.枚举类型是作为Java语言的一部分,是完全类型安全的, 编译器会帮助我们检查枚举类型的正 ...
- bootstrap模态对话框
bootstrap模态对话框 前提是引入bootstrap的css和js的东西 data-backdrop="static"代表的是点击旁边的内容,不进行关闭操作,但是esc的时候 ...
- WireShark过滤解析HTTP/TCP
过滤器的使用: 可利用“&&”(表示“与”)和“||”(表示“或”)来组合使用多个限制规则, 比如“(http && ip.dst == 64.233.189.104) ...
- cips2016+学习笔记︱简述常见的语言表示模型(词嵌入、句表示、篇章表示)
在cips2016出来之前,笔者也总结过种类繁多,类似词向量的内容,自然语言处理︱简述四大类文本分析中的"词向量"(文本词特征提取)事实证明,笔者当时所写的基本跟CIPS2016一 ...
- Hi3531 SDK v2.0.8.0 安装
1.Hi3531 SDK包位置 在"Hi3531_V100R001***/01.software/board"目录下,您可以看到一个 Hi3531_SDK_Vx.x.x.x.tgz ...