Description

已知多项式方程:

a0+a1x+a2x2+...+an*xn=0

求这个方程在[1,m]内的整数解(n和m均为正整数)。

解题报告:

这题比较诡,看到高精度做不了,就要想到取模,然后很容易发现是有问题的,所以要多取几个增加正确性,然后就开始枚举解,对于合法的解一定是对所有你选的质数都成立。

对于求这个多项式的值可以用秦九韶算法,这里不多做赘述.

  1. #include <algorithm>
  2. #include <iostream>
  3. #include <cstdlib>
  4. #include <cstring>
  5. #include <cstdio>
  6. #include <cmath>
  7. #define RG register
  8. #define il inline
  9. #define Max(a,b) ((a)>(b)?(a):(b))
  10. #define Min(a,b) ((a)<(b)?(a):(b))
  11. using namespace std;
  12. const int N=105,M=1000005;
  13. int pri[6]={30011,11261,14843,19997,10007,21893},n,m,a[N][6];
  14. bool vis[M/10][6];
  15. void gi(int i){
  16. char ch=getchar();int f=1;
  17. while(ch>'9' || ch<'0'){
  18. if(ch=='-')f=-1;ch=getchar();
  19. }
  20. while(ch>='0' && ch<='9'){
  21. for(int k=0;k<6;k++)
  22. a[i][k]=a[i][k]*10+ch-48,a[i][k]%=pri[k];
  23. ch=getchar();
  24. }
  25. for(int k=0;k<6;k++)a[i][k]*=f;
  26. }
  27. int ans[M],num=0;
  28. bool judge(int x,int k){
  29. int ret=0;
  30. for(int i=n;i>=1;i--)
  31. ret=x*ret%pri[k]+a[i][k],ret%=pri[k];
  32. return ret==0;
  33. }
  34. bool check(int x){
  35. for(int i=0;i<6;i++)
  36. if(vis[x%pri[i]][i]==0)return false;
  37. return true;
  38. }
  39. void work()
  40. {
  41. scanf("%d%d",&n,&m);n++;
  42. for(int i=1;i<=n;i++)gi(i);
  43. for(int i=0;i<6;i++)
  44. for(int j=0;j<pri[i];j++)
  45. vis[j][i]=judge(j,i);
  46. for(int i=1;i<=m;i++)
  47. if(check(i))ans[++num]=i;
  48. printf("%d\n",num);
  49. for(int i=1;i<=num;i++)printf("%d\n",ans[i]);
  50. }
  51. int main(){work();return 0;}

bzoj 3751: [NOIP2014]解方程的更多相关文章

  1. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  2. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  3. bzoj 3751: [NOIP2014]解方程【数学】

    --我真是太非了,自己搞了7个质数都WA,从别人那粘5个质数就A了-- 就是直接枚举解,用裴蜀定理计算是否符合要求,因为这里显然结果很大,所以我们对多个质数取模看最后是不是都为0 #include&l ...

  4. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  5. 【BZOJ】3751: [NOIP2014]解方程

    题意 求\(\sum_{i=0}^{n} a_i x^i = 0\)在\([1, m]\)内的整数解.(\(0 < n \le 100, |a_i| \le 10^{10000}, a_n \n ...

  6. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  7. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

  8. [BZOJ3751][NOIP2014] 解方程

    Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个 ...

  9. 【bzoj3751】[NOIP2014]解方程 数论

    题目描述 已知多项式方程: a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). 输入 第一行包含2个整数n.m,每两个整数之间用一个空格隔开 ...

随机推荐

  1. HTML5文件操作API

    HTML5文件操作API       一.文件操作API 在之前我们操作本地文件都是使用flash.silverlight或者第三方的activeX插件等技术,由于使用了这些技术后就很难进行跨平台.或 ...

  2. python控制流 If-else

        控制流 If-else 我们处理现实生活中的问题时会做出决定,就像决定买哪种相机或者怎样更好的打篮球.同样我们写计算机程序的时候也要做相同的事情.我们通过 if-else 语句来做决定,我们使 ...

  3. 项目Beta冲刺Day2

    项目进展 李明皇 今天解决的进度 优化了信息详情页的布局:日期显示,添加举报按钮等 优化了程序的数据传递逻辑 明天安排 程序运行逻辑的完善 林翔 今天解决的进度 实现微信端消息发布的插入数据库 明天安 ...

  4. bzoj 4399 魔法少女LJJ

    4399: 魔法少女LJJ Time Limit: 20 Sec  Memory Limit: 162 MBhttp://www.lydsy.com/JudgeOnline/problem.php?i ...

  5. TensorFlow-谷歌深度学习库 手把手教你如何使用谷歌深度学习云平台

    自己的电脑跑cnn, rnn太慢? 还在为自己电脑没有好的gpu而苦恼? 程序一跑一俩天连睡觉也要开着电脑训练? 如果你有这些烦恼何不考虑考虑使用谷歌的云平台呢?注册之后即送300美元噢-下面我就来介 ...

  6. xxe漏洞检测及代码执行过程

    这两天看了xxe漏洞,写一下自己的理解,xxe漏洞主要针对webservice危险的引用的外部实体并且未对外部实体进行敏感字符的过滤,从而可以造成命令执行,目録遍历等.首先存在漏洞的web服务一定是存 ...

  7. phalcon环境的搭建和dll扩展下载与选择

    phalcon需要下载一个扩展的dll文件才能运行项目 其中需要注意dll放在一个php扩展目录中windows下php/ext/,还需要在两个Php.ini文件中增加扩展说明,一般只需要更改 D:\ ...

  8. python RE模块的使用

    摘要: re模块包括操作正则表达式的函数,一些工作中都需要用到,现在说明下使用方法. 使用说明: 一,re模块下的函数:            函数             描述 compile(pa ...

  9. jhipster生成项目无法使用restful请求,报access_denied 403错误

    写在前边: 我们的微服务是注册中心.uaa.gateway为基础,添加微服务应用,昨天下午在测试jhipster的增删改查,因为jhipster生成的代码都是restful的,好不容易找到网关配置的映 ...

  10. iot会议纪要 20180105

    1.需求概述设备 <-->物接入 <--> 云端认证授权协议解析主题 端点endpoint(地址)->设备thing(用户)->身份principal(密码)-&g ...