【LA3938】"Ray, Pass me the dishes!"
Description
After doing Ray a great favor to collect sticks for Ray, Poor Neal becomes very hungry. In returnfor Neal's help, Ray makes a great dinner for Neal. When it is time for dinner, Ray arranges all the dishes he makes in a single line (actually this line is very long……, the dishes are represented by 1, 2, 3……). "You make me work hard and don't pay me! You refuse to teach me Latin Dance! Now it is timefor you to serve me", Neal says to himself.
Every dish has its own value represented by an integer whose absolute value is less than 1,000,000,000.Before having dinner, Neal is wondering about the total value of the dishes he will eat. So he raises many questions about the values of dishes he would have.
For each question Neal asks, he will rst write down an interval [a,b] (inclusive) to represent all
the dishes a,a+1,……,b, where a and b are positive integers, and then asks Ray which sequence ofconsecutive dishes in the interval has the most total value.
Now Ray needs your help
Input
he input le contains multiple test cases. For each test case, there are two integers n,m in the rst line (\(n,m < 500000\)).
n is the number of dishes and m is the number of questions Neal asks.
Then n numbers come in the second line, which are the values of the dishes from left to right. Next m lines are the questions and each line contains two numbers a,b as described above. Proceed to the end of the input .
Output
For each test case, output mlines. Each line contains two numbers, indicating the beginning position and end position of the sequence. If there are multiple solutions, output the one with the smallest beginning position. If there are still multiple solutions then, just output the one with the smallest end position. Please output the result as in the Sample Output
Sample Input
3 1
1 2 3
1 1
Sample Output
1 1
Solution
显然,这是一个裸的区间内最大子段和问题,但是需要注意的是至少需要取一个数,并且多解输出区间尽可能靠左的。
首先讲一下解决最大子段和问题的思路:
维护三种信息:最大左子段和(意思是包含区间左端点的子段和)(记为lx),最大右子段和(记为rx),以及区间最大字段和(记为mx),然后线段树维护上述三种信息即可。
对于区间\([l,r]\) 我们可以按照如下方式维护信息:$lx_{[l,r]}=max(lx_{[l,mid]},lx_{[mid+1,r]}+sum_{[l,mid]}) $
rx同理不多赘述
$mx_{[l,r]}=max(mx_{[l,mid]},mx_{[mid+1,r]},rx_{[l,mid]}+lx_{[mid+1,r]}) $可以zkw线段树书写,时间效率\(O(m \log_{2} n)\)
Code
#include <stdio.h>
#define MN 500005
#define M (1<<18)
#define R register
#define ll long long
inline int read(){
R int x; R char c; R bool f;
for (f=0; (c=getchar())<'0'||c>'9'; f=c=='-');
for (x=c-'0'; (c=getchar())>='0'&&c<='9'; x=(x<<3)+(x<<1)+c-'0');
return f?-x:x;
}
ll pre[MN],n,q,m;
struct node{
int l,r;
node(int l=0,int r=0):l(l),r(r){};
};
inline ll sum(int l,int r){return pre[r]-pre[l-1];}
inline ll sum(node &p){return sum(p.l,p.r);}
inline bool operator >(node a,node b){return sum(a)>sum(b)||(sum(a)==sum(b)&&(a.l<b.l||(a.l==b.l&&a.r<b.r)));}
inline node max(node a,node b){return a>b?a:b;}
struct data{node l,r,m;bool p;data(node l,node r,node m):l(l),r(r),m(m){p=1;} data(){p=1;}};
inline data operator +(data a,data b){
if (!a.p) return b; if (!b.p) return a;
R data c;c.l=max(a.l,node(a.l.l,b.l.r));
c.r=max(b.r,node(a.r.l,b.r.r));
c.m=max(max(a.m,b.m),node(a.r.l,b.l.r));return c;
}
data T[M<<1];
inline data query(int l,int r){
R data lans,rans;lans.p=0,rans.p=0;
for (l+=m-1,r+=m+1; l^r^1; l>>=1,r>>=1){
if (~l&1) lans=lans+T[l^1];
if ( r&1) rans=T[r^1]+rans;
}return lans+rans;
}
inline void work(){
for (m=1; m<n+2; m<<=1);pre[0]=0;
for (R int i=1; i<=n; ++i) pre[i]=pre[i-1]+read(),T[m+i]=data(node(i,i),node(i,i),node(i,i));
for (R int i=n+m+1; i<=(m-1<<1); ++i) T[i].p=0;T[m].p=0;
for (R int i=m-1; i; --i) T[i]=T[i<<1]+T[i<<1|1];
for (R int i=1; i<=q; ++i){
R int l=read(),r=read();
R data ans=query(l,r);if (!ans.m.r) ans.m.r=ans.m.l;
printf("%d %d\n",ans.m.l,ans.m.r);
}
}
int main(){for (R int cnt=1; ~scanf("%d%d",&n,&q); ++cnt) printf("Case %d:\n",cnt),work();}
【LA3938】"Ray, Pass me the dishes!"的更多相关文章
- UvaLA 3938 "Ray, Pass me the dishes!"
"Ray, Pass me the dishes!" Time Limit: 3000MS Memory Limit: Unkn ...
- UVA 1400."Ray, Pass me the dishes!" -分治+线段树区间合并(常规操作+维护端点)并输出最优的区间的左右端点-(洛谷 小白逛公园 升级版)
"Ray, Pass me the dishes!" UVA - 1400 题意就是线段树区间子段最大和,线段树区间合并,但是这道题还要求输出最大和的子段的左右端点.要求字典序最小 ...
- UVA 1400 1400 - "Ray, Pass me the dishes!"(线段树)
UVA 1400 - "Ray, Pass me the dishes!" option=com_onlinejudge&Itemid=8&page=show_pr ...
- 【Unity3d】Ray射线初探-射线的原理及用法
http://www.xiaobao1993.com/231.html 射线是一个无穷的线,开始于origin并沿着direction方向. 当射线碰到物体后.它就会停止发射. 在屏幕中拉一个CUBE ...
- UVALive3938 "Ray, Pass me the dishes!" 线段树动态区间最大和
AC得相当辛苦的一道题.似乎不难,可是须要想细致, 開始的时候的错误思路----是受之前做过的区间最长连续子串影响http://blog.csdn.net/u011026968/article/det ...
- 线段树(区间合并) LA 3989 "Ray, Pass me the dishes!"
题目传送门 题意:动态最大连续子序列和,静态的题目 分析:nlogn的归并思想.线段树维护结点的三个信息,最大前缀和,最大后缀和,该区间的最大和的两个端点,然后答案是三个的better.书上用pair ...
- UVa 1400 (线段树) "Ray, Pass me the dishes!"
求一个区间的最大连续子序列,基本想法就是分治,这段子序列可能在区间的左半边,也可能在区间的右半边,也有可能是横跨区间中点,这样就是左子区间的最大后缀加上右子区间的最大前缀之和. 线段树维护三个信息:区 ...
- 1400 - "Ray, Pass me the dishes!"
哈哈,原来题意看错了,但有多个解的时候,输出起点靠前的,如果起点一样,则输出终点靠前的,修改后AC的代码如下: #include <cstdio> #include <iostrea ...
- uvalive 3938 "Ray, Pass me the dishes!" 线段树 区间合并
题意:求q次询问的静态区间连续最大和起始位置和终止位置 输出字典序最小的解. 思路:刘汝佳白书 每个节点维护三个值 pre, sub, suf 最大的前缀和, 连续和, 后缀和 然后这个题还要记录解的 ...
随机推荐
- 201621123031 《Java程序设计》第7周学习总结
作业07-Java GUI编程 1.本周学习总结 1.1 思维导图:Java图形界面总结 1.2 可选:使用常规方法总结其他上课内容. 事件监听器: Java事件监听器是由事件类和监听接口组成,自定义 ...
- equalsignorecase 和equals的区别
equals方法来自于Object类equalsIgnoreCase方法来自String类equals对象参数是Object 用于比较两个对象是否相等equals在Object类中方法默然比较对象内存 ...
- Python习题(第一课)
想了想其他的太简单了,还是不放了,剩三题吧. 一.完美立方 编写一个程序,对任给的正整数N (N≤100),寻找所有的四元组(a, b, c, d),使得a^3= b^3 + c^3 + d^3,其中 ...
- 《javascript设计模式与开发实践》阅读笔记(16)—— 状态模式
状态模式 会区分事物内部的状态,事物内部状态的改变往往会带来事物的行为改变.比如电灯的开关是开还是关,在外界的表现就完全不同. 电灯例子 按照常规思路,实现一个电灯就是构造一个电灯类,然后指定一下它的 ...
- ZendStudio的使用技巧
为了使得ZendStudio支持volt模版可以在首选项中的ContentType加上.volt就行 在ZendStudio中的->help中有一个installNewssoftWare,然后会 ...
- linux 进程间通信的3种高级方式及优缺点
由于不同的进程运行在各自不同的内存空间中.一方对于变量的修改另一方是无法感知的.因此.进程之间的信息传递不可能通过变量或其它数据结构直接进行,只能通进程间通信来完成. 根据进程通信时信息量大小的不同, ...
- kubernetes进阶(02)kubernetes的node
一.Node概念 Node是Pod真正运行的主机,可以物理机,也可以是虚拟机. 为了管理Pod,每个Node节点上至少要运行container runtime(比如docker或者rkt). kube ...
- GIT入门笔记(12)- 删除文件、提交删除和恢复删除
在Git中,删除也是一个修改操作,我们实战一下, 1.先添加add一个新文件test.txt到Git并且提交commit到本地版本库: $ git add test.txt$ git commit - ...
- 详解Windows Server 2008 R2下安装Oracle 11g
本篇文章转载 http://www.it165.net/database/html/201212/3385.html 一.安装前的准备工作: 1. 修改计算机名: 服务器的计算机名称对于登录到Orac ...
- MySQL5.7.21解压版安装详细教程以及一些问题的解决
笔者是最近玩mysql的时候玩坏了,想写点东西记录下.我安装的是MySQL5.7.21,安装之后没有my.ini文件. 遇到了2个问题,一是mysql服务启动不了,被my.ini整了,二是root密码 ...