●BZOJ 4516 [Sdoi2016]生成魔咒
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=4516
题解:
把串反过来后,问题变为求每个后缀的互不相同的子串个数。
首先用倍增算法求出 sa[],rank[],height[],然后对 height[]数组建立 ST表。
接着求出整个串的子串个数,ans+=N-sa[i]-height[i]。(我从0开始编号的)
式子的含义就是考虑每个后缀相比它的前一名,多了几个与之前不同的且串头为该后缀的头的子串。
(一定要清晰地懂得并理解那个式子哦)
之前得出了0 位置开始的后缀(即整个串)的子串个数,
那么现在就需要把 rank[0]这个后缀从排好序的后缀数组中去除。
然后维护出新的后缀(即从1位置开始的后缀)的子串个数。
怎么做呢,反向考虑 ans的求法:
即把rank[0]产生的贡献减去(包括和它上面一名以及和它下面一名产生的贡献),相当于该后缀被去除了。
这时排在rank[0]上面一位的后缀(设为 u),和排在rank[0]下面一位的后缀(设为 d),
就挨在了一起,那么要加上 u 后缀和 d 后缀的贡献。
然后就得到了新的后缀的子串个数。
之后的其它后缀的计算就类似了。
另外再提一下,在找当前后缀的上一名后缀和下一名后缀时,找到的必须是还在后缀数组中(即还没有被去除),
可以用类似并查集的思想维护(好吧,是路径压缩的思想),做到均摊 O(1)。
除开倍增算法和求ST表的复杂度 O(N)
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 100500
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
int sa[MAXN],rak[MAXN],hei[MAXN];
int up[MAXN],down[MAXN],A[MAXN],log2[MAXN],stm[MAXN][20];
bool vis[MAXN];
void build(int N,int M){
static int cc[MAXN],ta[MAXN],tb[MAXN],*x,*y,h,p;
x=ta; y=tb; h=0; A[N]=-1;
for(int i=0;i<M;i++) cc[i]=0;
for(int i=0;i<N;i++) cc[x[i]=A[i]]++;
for(int i=1;i<M;i++) cc[i]+=cc[i-1];
for(int i=N-1;i>=0;i--) sa[--cc[x[i]]]=i;
for(int k=1;p=0,k<N;k<<=1){
for(int i=N-k;i<N;i++) y[p++]=i;
for(int i=0;i<N;i++) if(sa[i]>=k) y[p++]=sa[i]-k;
for(int i=0;i<M;i++) cc[i]=0;
for(int i=0;i<N;i++) cc[x[y[i]]]++;
for(int i=1;i<M;i++) cc[i]+=cc[i-1];
for(int i=N-1;i>=0;i--) sa[--cc[x[y[i]]]]=y[i];
swap(x,y); y[N]=-1; x[sa[0]]=0; M=1;
for(int i=1;i<N;i++)
x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]?M-1:M++;
if(M>=N) break;
}
for(int i=0;i<N;i++) rak[sa[i]]=i;
for(int i=0,j;i<N;i++){
if(h) h--;
if(rak[i]){
j=sa[rak[i]-1];
while(A[i+h]==A[j+h]) h++;
}
stm[rak[i]][0]=hei[rak[i]]=h;
}
for(int k=1;k<=log2[N];k++)
for(int i=(1<<k)-1;i<N;i++)
stm[i][k]=min(stm[i-(1<<(k-1))][k-1],stm[i][k-1]);
}
int query(int l,int r,int N){
static int k;
if(l==-1||r==-1||l==N||r==N) return 0;
if(l>r) swap(l,r); l++;
k=log2[r-l+1];
return min(stm[l+(1<<k)-1][k],stm[r][k]);
}
int find(int i,int *to,const int &N){
if(i==-1||i==N||!vis[i]) return i;
return to[i]=find(to[i],to,N);
}
void solve(int N){
static long long now,ANS[MAXN];
for(int i=1;i<N;i++) up[i]=i-1,down[i-1]=i; up[0]=-1; down[N-1]=N;
for(int i=0;i<N;i++) now+=1ll*N-sa[i]-hei[i];
ANS[N]=now; sa[N]=N;
for(int i=0,r,u,d;i<N-1;i++){
r=rak[i]; vis[r]=1; u=find(r,up,N); d=find(r,down,N);
now-=1ll*N-sa[r]-query(u,r,N);
now-=1ll*N-sa[d]-query(d,r,N);
now+=1ll*N-sa[d]-query(u,d,N);
ANS[N-i-1]=now;
}
for(int i=1;i<=N;i++) printf("%lld\n",ANS[i]);
}
int main()
{
filein(incantation);fileout(incantation);
static int tmp[MAXN];
log2[1]=0; for(int i=2;i<=100000;i++) log2[i]=log2[i>>1]+1;
int N,cnt; scanf("%d",&N);
for(int i=N-1;i>=0;i--) scanf("%d",&A[i]),tmp[i]=A[i];
sort(tmp,tmp+N);
cnt=unique(tmp,tmp+N)-tmp;
for(int i=0;i<N;i++) A[i]=lower_bound(tmp,tmp+cnt,A[i])-tmp;
build(N,N);
solve(N);
return 0;
}
●BZOJ 4516 [Sdoi2016]生成魔咒的更多相关文章
- BZOJ 4516: [Sdoi2016]生成魔咒 [后缀自动机]
4516: [Sdoi2016]生成魔咒 题意:询问一个字符串每个前缀有多少不同的子串 做了一下SDOI2016R1D2,题好水啊随便AK 强行开map上SAM 每个状态的贡献就是\(Max(s)-M ...
- BZOJ 4516. [Sdoi2016]生成魔咒【SAM 动态维护不同子串数量】
[Sdoi2016]生成魔咒 动态维护不同子串的数量 想想如果只要查询一次要怎么做,那就是计算各个点的\(len[u]-len[link[u]]\)然后求和即可,现在要求动态更新,我们可以保存一个答案 ...
- 【刷题】BZOJ 4516 [Sdoi2016]生成魔咒
Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例 ...
- BZOJ 4516: [Sdoi2016]生成魔咒
Description 给出一串数字,求每次插入一个数字后本质不同的子串. Sol SAM. 在 SAM 上添加节点的时候统计一下 \(val[np]-val[par[np]]\) 就可以了... 用 ...
- BZOJ 4516: [Sdoi2016]生成魔咒 后缀自动机 性质
http://www.lydsy.com/JudgeOnline/problem.php?id=4516 http://blog.csdn.net/doyouseeman/article/detail ...
- BZOJ 4516: [Sdoi2016]生成魔咒——后缀数组、并查集
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4516 题意 一开始串为空,每次往串后面加一个字符,求本质不同的子串的个数,可以离线.即长度为 ...
- BZOJ.4516.[SDOI2016]生成魔咒(后缀数组 RMQ)
题目链接 后缀自动机做法见这(超好写啊). 后缀数组是可以做的: 本质不同的字符串的个数为 \(子串个数-\sum_{ht[i]}\),即 \(\frac{n(n+1)}{2}-\sum_{ht[i] ...
- BZOJ.4516.[SDOI2016]生成魔咒(后缀自动机 map)
题目链接 后缀数组做法见这. 直接SAM+map.对于每个节点其产生的不同子串数为len[i]-len[fa[i]]. //15932kb 676ms #include <map> #in ...
- BZOJ 4516 [Sdoi2016]生成魔咒 ——后缀自动机
本质不同的字串,考虑SA的做法,比较弱,貌似不会. 好吧,只好用SAM了,由于后缀自动机的状态最简的性质, 所有不同的字串就是∑l[i]-l[fa[i]], 然后后缀自动机是可以在线的,然后维护一下就 ...
随机推荐
- 第14、15週PTA題目的處理
題目1 選擇法排序 1.實驗代碼 #include <stdio.h> #include <stdlib.h> int main() { int n,index,exchang ...
- 201621123031 《Java程序设计》第13周学习总结
作业13-网络 1.本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 为了让你的系统可以被 ...
- android数据库持久化框架, ormlite框架,
前言 Android中内置了SQLite,但是对于数据库操作这块,非常的麻烦.其实可以试用第3方的数据库持久化框架对之进行结构上调整, 摆脱了访问数据库操作的细节,不用再去写复杂的SQL语句.虽然这样 ...
- Packet for query is too large (84 > -1).
windows下的resin配置连接mysql,常用的安全的做法是将数据库信息配置到conf目录下的resin.xml文件中. 因为resin连接mysql不是必须的,所以resin本身没有提供mys ...
- 微信支付get_brand_wcpay_request:fail
最近做了微信支付功能,和后端一起踩坑中,微信一直报错:get_brand_wcpay_request:fail 出现该问题的原因: 1.生成的sign签名有问题 2.支付授权目录配置有问题 在经过仔细 ...
- 关于win10系统1709版本安装JDK出现变量配置正确但仍有“java不是内部或外部命令”的解决办法
背景:联想拯救者R720笔记本,系统一键还原了,需要重新安装一部分软件,最基本的就是JDK,但今天在安装时遇到了问题,之前安装的1.8版本,没有仔细配置环境变量,这一次安装的是1.7版本的,仔仔细细配 ...
- 如何深入系统的学习一门编程语言——python自学笔记
前言 最早接触python的时候,他并没有现在这么火,我也没把他太当回事,那时候我对python的印象就是给运维人员使用的一门很古老的语言,显然随着tensorflow(以下简称tf)的兴起,pyth ...
- angular2 学习笔记 ( 4.0 初探 )
目前是 4.0.0-rc.2. 刚好有个小项目要开发,就直接拿它来试水啦. 更新 cli 到最新版, 创建项目, 然后 follow https://github.com/angular/angula ...
- BAT美团滴滴java面试大纲(带答案版)之三:多线程Lock
继续面试大纲系列文章. 这是多线程的第二篇. 多线程就像武学中对的吸星大法,理解透了用好了可以得道成仙,俯瞰芸芸众生:而滥用则会遭其反噬. 在多线程编程中要渡的第二个“劫”,则是Lock.在很多时候, ...
- django中HttpRequest请求
视图的第一个参数必须是HttpRequest对象 在视图函数中,接收的request有如下属性: path:一个字符串,表示请求的页面的完整路径,不包含域名. method:一个字符串,表示请求使用的 ...