题目大意:

求\(\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\)

解题报告:

有一个结论:一个数的所有因子的欧拉函数之和等于这个数本身

运用这个我们可以开始推:

\(\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\)

\(\sum_{i=1}^n\sum_{j=1}^m\sum_{d|gcd(i,j)}\phi(d)\)

\(\sum_{i=1}^n\sum_{j=1}^m\sum_{d|i,j}\phi(d)\)

\(\sum_{d=1}^n\phi(d)*(n/d)*(m/d)\)

对于最后一个式子可以数论分块解决,但此题中不需要

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=1e7+5,mod=998244353;
typedef long long ll;
bool vis[N];int prime[N],num=0,n,m;ll sum[N],phi[N];
void solve(){
int to;
phi[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[++num]=i;
phi[i]=i-1;
}
for(int j=1;j<=num && prime[j]*i<=n;j++){
to=i*prime[j];vis[to]=true;
if(i%prime[j])phi[to]=phi[i]*(prime[j]-1)%mod;
else{
phi[to]=phi[i]*prime[j]%mod;
break;
}
}
}
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+phi[i],sum[i]%=mod;
}
void work()
{
cin>>n>>m;
if(n>m)swap(n,m);
solve();
ll ans=0;
RG int j;
for(RG int i=1;i<=n;i=j+1){
j=Min(n/(n/i),m/(m/i));
ans+=((sum[j]-sum[i-1])%mod+mod)%mod*(n/i)%mod*(m/i)%mod;
if(ans>=mod)ans-=mod;
}
printf("%lld\n",ans);
} int main()
{
freopen("hoip.in","r",stdin);
freopen("hoip.out","w",stdout);
work();
return 0;
}

[济南集训 2017] 求gcd之和的更多相关文章

  1. cogs 2752. [济南集训 2017] 数列运算

    2752. [济南集训 2017] 数列运算 ★★☆   输入文件:sequenceQBXT.in   输出文件:sequenceQBXT.out   简单对比时间限制:1 s   内存限制:512 ...

  2. [CodePlus 2017 11月赛]晨跑 题解(辗转相除法求GCD)

    [CodePlus 2017 11月赛]晨跑 Description "无体育,不清华"."每天锻炼一小时,健康工作五十年,幸福生活一辈子".在清华,体育运动绝 ...

  3. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

  4. [LOJ 6031]「雅礼集训 2017 Day1」字符串

    [LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询 ...

  5. [LOJ 6029]「雅礼集训 2017 Day1」市场

    [LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...

  6. loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主

    #2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较   题目描述 "A fight? Co ...

  7. 【CJOJ2512】gcd之和(莫比乌斯反演)

    [CJOJ2512]gcd之和(莫比乌斯反演) 题面 给定\(n,m(n,m<=10^7)\) 求 \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\] 题解 首先把公因数直 ...

  8. LOJ_6045_「雅礼集训 2017 Day8」价 _最小割

    LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...

  9. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

随机推荐

  1. JAVA的循环控制与循环嵌套

    循环控制和循环嵌套 循环控制是除了循环条件之外,控制循环是否进行的一个机制,这给处理循环问题带来了灵活性.循环体内的语句块可以是顺序执行的语句,可以是分支结构的语句,也可以是循环语句,循环中含循环,就 ...

  2. 2017 国庆湖南 Day6

    期望得分:100+100+60=260 实际得分:100+85+0=185 二分最后一条相交线段的位置 #include<cstdio> #include<iostream> ...

  3. Scala 操作符与提取器

    实际上Scala没有操作符, 只是以操作符的格式使用方法. 操作符的优先级取决于第一个字符(除了赋值操作符), 而结合性取决于最后一个字符 Scala的操作符命名更加灵活:) 操作符 中置操作符(In ...

  4. Docker_部署jenkins(dockerfile实现)

    docker+jenkins开始合体! 我用的是ubuntu14.04的基础镜像,具体的这里不做赘述. 我在/tmp/目录下建了一个Dockerfile文件: touch Dockerfile vi ...

  5. @SpringBootApplication 组合注解包含哪些注解及作用

    序:在学习springboot,教程一般对一些注解语焉不详,发现@SpringBootApplication 这个注解包含了很多注解,也就是说使用这个注解可以少写几个注解,这里看源码粘出来一些,仅用于 ...

  6. 关于win10系统1709版本安装JDK出现变量配置正确但仍有“java不是内部或外部命令”的解决办法

    背景:联想拯救者R720笔记本,系统一键还原了,需要重新安装一部分软件,最基本的就是JDK,但今天在安装时遇到了问题,之前安装的1.8版本,没有仔细配置环境变量,这一次安装的是1.7版本的,仔仔细细配 ...

  7. python random 模块的用法

    Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 < ...

  8. SpringCloud的服务注册中心(四)- 高可用服务注册中心的搭建

    一.双 服务注册注册中心 1.服务注册中心的服务端 - EurekaServer 1.1.EurekaServer1 String.application.name=eureka-server ser ...

  9. NHibernate从入门到精通系列(3)——第一个NHibernate应用程序

    内容摘要 准备工作 开发流程 程序开发 一.准备工作 1.1开发环境 开发工具:VS2008以上,我使用的是VS2010 数据库:任意关系型数据库,我使用的是SQL Server 2005 Expre ...

  10. linux搭建django项目基本步骤

    一 linux下django基本项目搭建流程:M model 用于与数据库交互V view 接受前台请求 调用model获取结果,调用T获取页面,返回给前台T template 接受view的要求 生 ...