【BZOJ2705】【Sdoi2012】Longge的问题
Description
Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出\(\Sigma gcd(i, N) (1 \leq i \leq N)\)。
Input
一个整数,为N。
Output
一个整数,为所求的答案。
Sample Input
6
Sample Output
15
Hint
对于60%的数据,\(0<N \leq 2^{16}\)
对于100%的数据,\(0<N \leq 2^{32}\)
Solution
记\(f(k)\)表示\(gcd(m,n)=k\)的\(m(m \leq n)\)的个数,因此\(gcd(m/k,n/k)=1\),于是有\(f(k)=\varphi (n/k)\).
故对于任意\(k|n\),\(k\)对答案的贡献为\(kf(k)=k \varphi (n/k)\),用线筛预处理出\(\sqrt n\)内的质数,然后求欧拉函数求和即可。
时间复杂度\(O(\sqrt n \log n)\)
Code
#include <stdio.h>
#include <math.h>
#define MN (1<<16)
#define R register
#define ll long long
#define file(x) freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);
#define end fclose(stdin);fclose(stdout)
ll n,ans;int phi[MN+5],pr[MN],pn,m;bool b[MN+5];
void pre(){
phi[1]=1;for (R int i=2; i<=m; ++i){
if (!b[i]){
pr[++pn]=i;
phi[i]=i-1;
}
for (R int j=1; j<=pn; ++j){
if (1ll*i*pr[j]>m) break;
b[i*pr[j]]=1;
if (i%pr[j]==0){
phi[i*pr[j]]=phi[i]*pr[j];
break;
}phi[i*pr[j]]=phi[i]*(pr[j]-1);
}
}
}
inline ll getphi(ll x){
R ll q=x,res=x;
for (R int i=1; i<=pn; ++i)
if (!(q%pr[i])){
res=res/pr[i]*phi[pr[i]];
while((!(q%pr[i]))) q/=pr[i];
}
if (q>1) res=res/q*(q-1);return res;
}
int main(){
scanf("%lld",&n);m=floor(sqrt(n));pre();
for (R int t=1; t<=m; ++t)
if (n%t==0){
ans+=t*getphi(n/t);
if (t*t<n) ans+=n/t*phi[t];
}printf("%lld\n",ans);
return 0;
}
【BZOJ2705】【Sdoi2012】Longge的问题的更多相关文章
- BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】
BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...
- BZOJ2705: [SDOI2012]Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Solut ...
- BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...
- bzoj2705: [SDOI2012]Longge的问题 欧拉定理
题意:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 题解:考虑n的所有因子,假设有因子k,那么对答案的贡献gcd(i,n)==k的个数即gcd(i/k,n/k)== ...
- 【数论】【枚举约数】【欧拉函数】bzoj2705 [SDOI2012]Longge的问题
∵∑gcd(i, N)(1<=i <=N) =k1*s(f1)+k2*s(k2)+...+km*s(km) {ki是N的约数,s(ki)是满足gcd(x,N)=ki(1<=x< ...
- [BZOJ2705][SDOI2012]Longge的问题 数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 首先分析得题目所求$gcd(i,N)$的取值只可能是$N$的因子,则有$$Ans=\ ...
- bzoj2705 [SDOI2012]Longge的问题——因数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 一开始自己想了半天... 有了点思路:遍历 n 的因数 k,每个因数要预处理出 gcd ...
- 【bzoj2705】[SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2507 Solved: 1531[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
随机推荐
- Beta冲刺NO.3
Beta冲刺 第三天 1. 昨天的困难 1.昨天的困难主要集中在对Ajax的使用上,不熟悉这种语法,所以也就浪费了时间,导致昨天的批量删除没有完全完成. 2.由于之前的网页构造style很乱,导致修改 ...
- 【iOS】跳转到设置页面
iOS8.0以后有效 定位服务 定位服务有很多APP都有,如果用户关闭了定位,那么,我们在APP里面可以提示用户打开定位服务.点击到设置界面设置,直接跳到定位服务设置界面.代码如下: 1 2 3 4 ...
- 修改MYSQL的默认连接时长
show global variables like 'wait_timeout'; 设置成10小时; set global wait_timeout=36000;
- 使用HttpClient4.5实现HTTPS的双向认证
说明:本文主要是在平时接口对接开发中遇到的为保证传输安全的情况特要求使用https进行交互的情况下,使用httpClient4.5版本对HTTPS的双向验证的 功能的实现 首先,老生常谈,文章 ...
- 记一次oracle crs无法重启事故
今天在修改了数据库参数后,关闭数据库及crs,然后重新启动了服务器,服务器启动完成之后,发现数据库无法启动,过程如下: step1:重启数据库 $ su - grid $ srvctl stop da ...
- 有货前端 Web-APM 实践
有货前端 Web-APM 实践 0 背景 有货电商技术架构上采用的是前后端分离,前端是主要以业务展示和接口聚合为主,拥有自己的 BFF (Backend For Frontend),以 nodejs ...
- PHP模式设计之单例模式、工厂模式、注册树模式、适配器模式、观察者模式
php模式设计之单例模式 什么是单例模式? 单例模式是指在整个应用中只有一个实例对象的设计模式 为什么要用单例模式? php经常要链接数据库,如果在一个项目中频繁建立连接数据库,会造成服务器资源的很大 ...
- .Net EntityFramwork6.0 EF框架开发入门
一.环境 开发环境:Sqlserver2008 R2.Visual Studio2012 二.准备工作 1.新建MVC空项目 2.通过NuGet获取 EntityFramework 包 操作截图 ...
- 分布式服务框架HSF
最近在读阿里巴巴中台战略思想与架构这本书,so和大家分享一些我get到的东东. HSF是阿里巴巴内部的分布式服务框架,这个大家都很熟悉了,先上一张HSF的工作原理图: 这个图说明了HSF框架中每个组件 ...
- ejs注释问题
项目中遇到一个问题: 代码如下: 但是代码如下时,却不会出现bug: bug的导火索是ejs的注释: 因为我没有用对注释,所以被注释部分的if语句仍旧生效了. bug的根本原因是没有对mod类型进行判 ...