转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213

来自:shiter编写程序的艺术

1.绪论

图切割算法是组合图论的经典算法之一。近年来,许多学者将其应用到图像和视频分割中,取得了很好的效果。本文简单介绍了图切算法和交互式图像分割技术,以及图切算法在交互式图像分割中的应用。

图像分割指图像分成各具特性的区域并提取出感兴趣目标的技术和过程,它是由图像处理到图像分析的关键步骤,是一种基本的计算机视觉技术。只有在图像分割的基础上才能对目标进行特征提取和参数测量,使得更高层的图像分析和理解成为可能。因此对图像分割方法的研究具有十分重要的意义。

图像分割技术的研究已有几十年的历史,但至今人们并不能找到通用的方法能够适合于所有类型的图像。常用的图像分割技术可划分为四类:特征阈值或聚类、边缘检测、区域生长或区域提取。虽然这些方法分割灰度图像效果较好,但用于彩色图像的分割往往达不到理想的效果。

交互式图像分割是指,首先由用户以某种交互手段指定图像的部分前景与部分背景,然后算法以用户的输入作为分割的约束条件自动地计算出满足约束条件下的最佳分割。典型的交互手段包括用一把画刷在前景和背景处各画几笔(如[1][4]等)以及在前景的周围画一个方框(如[2])等。

基于图切算法的图像分割技术是近年来国际上图像分割领域的一个新的研究热点。该类方法将图像映射为赋权无向图,把像素视作节点,利用最小切割得到图像的最佳分割。

2.几种改进算法

  • Graph Cut[1]算法是一种直接基于图切算法的图像分割技术。它仅需要在前景和背景处各画几笔作为输入,算法将建立各个像素点与前景背景相似度的赋权图,并通过求解最小切割区分前景和背景。
  • Grabcut[2]算法方法的用户交互量很少,仅仅需要指定一个包含前景的矩形,随后用基于图切算法在图像中提取前景。
  • Lazy Snapping[4]系统则是对[1]的改进。通过预计算和聚类技术,该方法提供了一个即时反馈的平台,方便用户进行交互分割。

文档说明:

http://download.csdn.net/detail/wangyaninglm/8484301

3.代码实现效果

graphcuts代码:

http://download.csdn.net/detail/wangyaninglm/8484243

ICCV'2001论文"Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images"。

Graph Cut方法是基于颜色统计采样的方法,因此对前背景相差较大的图像效果较佳。

同时,比例系数lambda的调节直接影响到最终的分割效果。

grabcut代码:

  1. // Grabcut.cpp : 定义控制台应用程序的入口点。
  2. //
  3.  
  4. #include "stdafx.h"
  5.  
  6. #include "opencv2/highgui/highgui.hpp"
  7. #include "opencv2/imgproc/imgproc.hpp"
  8.  
  9. #include <iostream>
  10.  
  11. #include "ComputeTime.h"
  12. #include "windows.h"
  13.  
  14. using namespace std;
  15. using namespace cv;
  16.  
  17. static void help()
  18. {
  19. cout << "\nThis program demonstrates GrabCut segmentation -- select an object in a region\n"
  20. "and then grabcut will attempt to segment it out.\n"
  21. "Call:\n"
  22. "./grabcut <image_name>\n"
  23. "\nSelect a rectangular area around the object you want to segment\n" <<
  24. "\nHot keys: \n"
  25. "\tESC - quit the program\n"
  26. "\tr - restore the original image\n"
  27. "\tn - next iteration\n"
  28. "\n"
  29. "\tleft mouse button - set rectangle\n"
  30. "\n"
  31. "\tCTRL+left mouse button - set GC_BGD pixels\n"
  32. "\tSHIFT+left mouse button - set CG_FGD pixels\n"
  33. "\n"
  34. "\tCTRL+right mouse button - set GC_PR_BGD pixels\n"
  35. "\tSHIFT+right mouse button - set CG_PR_FGD pixels\n" << endl;
  36. }
  37.  
  38. const Scalar RED = Scalar(0,0,255);
  39. const Scalar PINK = Scalar(230,130,255);
  40. const Scalar BLUE = Scalar(255,0,0);
  41. const Scalar LIGHTBLUE = Scalar(255,255,160);
  42. const Scalar GREEN = Scalar(0,255,0);
  43.  
  44. const int BGD_KEY = CV_EVENT_FLAG_CTRLKEY; //Ctrl键
  45. const int FGD_KEY = CV_EVENT_FLAG_SHIFTKEY; //Shift键
  46.  
  47. static void getBinMask( const Mat& comMask, Mat& binMask )
  48. {
  49. if( comMask.empty() || comMask.type()!=CV_8UC1 )
  50. CV_Error( CV_StsBadArg, "comMask is empty or has incorrect type (not CV_8UC1)" );
  51. if( binMask.empty() || binMask.rows!=comMask.rows || binMask.cols!=comMask.cols )
  52. binMask.create( comMask.size(), CV_8UC1 );
  53. binMask = comMask & 1; //得到mask的最低位,实际上是只保留确定的或者有可能的前景点当做mask
  54. }
  55.  
  56. class GCApplication
  57. {
  58. public:
  59. enum{ NOT_SET = 0, IN_PROCESS = 1, SET = 2 };
  60. static const int radius = 2;
  61. static const int thickness = -1;
  62.  
  63. void reset();
  64. void setImageAndWinName( const Mat& _image, const string& _winName );
  65. void showImage() const;
  66. void mouseClick( int event, int x, int y, int flags, void* param );
  67. int nextIter();
  68. int getIterCount() const { return iterCount; }
  69. private:
  70. void setRectInMask();
  71. void setLblsInMask( int flags, Point p, bool isPr );
  72.  
  73. const string* winName;
  74. const Mat* image;
  75. Mat mask;
  76. Mat bgdModel, fgdModel;
  77.  
  78. uchar rectState, lblsState, prLblsState;
  79. bool isInitialized;
  80.  
  81. Rect rect;
  82. vector<Point> fgdPxls, bgdPxls, prFgdPxls, prBgdPxls;
  83. int iterCount;
  84. };
  85.  
  86. /*给类的变量赋值*/
  87. void GCApplication::reset()
  88. {
  89. if( !mask.empty() )
  90. mask.setTo(Scalar::all(GC_BGD));
  91. bgdPxls.clear(); fgdPxls.clear();
  92. prBgdPxls.clear(); prFgdPxls.clear();
  93.  
  94. isInitialized = false;
  95. rectState = NOT_SET; //NOT_SET == 0
  96. lblsState = NOT_SET;
  97. prLblsState = NOT_SET;
  98. iterCount = 0;
  99. }
  100.  
  101. /*给类的成员变量赋值而已*/
  102. void GCApplication::setImageAndWinName( const Mat& _image, const string& _winName )
  103. {
  104. if( _image.empty() || _winName.empty() )
  105. return;
  106. image = &_image;
  107. winName = &_winName;
  108. mask.create( image->size(), CV_8UC1);
  109. reset();
  110. }
  111.  
  112. /*显示4个点,一个矩形和图像内容,因为后面的步骤很多地方都要用到这个函数,所以单独拿出来*/
  113. void GCApplication::showImage() const
  114. {
  115. if( image->empty() || winName->empty() )
  116. return;
  117.  
  118. Mat res;
  119. Mat binMask;
  120. if( !isInitialized )
  121. image->copyTo( res );
  122. else
  123. {
  124. getBinMask( mask, binMask );
  125. image->copyTo( res, binMask ); //按照最低位是0还是1来复制,只保留跟前景有关的图像,比如说可能的前景,可能的背景
  126. }
  127.  
  128. vector<Point>::const_iterator it;
  129. /*下面4句代码是将选中的4个点用不同的颜色显示出来*/
  130. for( it = bgdPxls.begin(); it != bgdPxls.end(); ++it ) //迭代器可以看成是一个指针
  131. circle( res, *it, radius, BLUE, thickness );
  132. for( it = fgdPxls.begin(); it != fgdPxls.end(); ++it ) //确定的前景用红色表示
  133. circle( res, *it, radius, RED, thickness );
  134. for( it = prBgdPxls.begin(); it != prBgdPxls.end(); ++it )
  135. circle( res, *it, radius, LIGHTBLUE, thickness );
  136. for( it = prFgdPxls.begin(); it != prFgdPxls.end(); ++it )
  137. circle( res, *it, radius, PINK, thickness );
  138.  
  139. /*画矩形*/
  140. if( rectState == IN_PROCESS || rectState == SET )
  141. rectangle( res, Point( rect.x, rect.y ), Point(rect.x + rect.width, rect.y + rect.height ), GREEN, 2);
  142.  
  143. imshow( *winName, res );
  144. }
  145.  
  146. /*该步骤完成后,mask图像中rect内部是3,外面全是0*/
  147. void GCApplication::setRectInMask()
  148. {
  149. assert( !mask.empty() );
  150. mask.setTo( GC_BGD ); //GC_BGD == 0
  151. rect.x = max(0, rect.x);
  152. rect.y = max(0, rect.y);
  153. rect.width = min(rect.width, image->cols-rect.x);
  154. rect.height = min(rect.height, image->rows-rect.y);
  155. (mask(rect)).setTo( Scalar(GC_PR_FGD) ); //GC_PR_FGD == 3,矩形内部,为可能的前景点
  156. }
  157.  
  158. void GCApplication::setLblsInMask( int flags, Point p, bool isPr )
  159. {
  160. vector<Point> *bpxls, *fpxls;
  161. uchar bvalue, fvalue;
  162. if( !isPr ) //确定的点
  163. {
  164. bpxls = &bgdPxls;
  165. fpxls = &fgdPxls;
  166. bvalue = GC_BGD; //0
  167. fvalue = GC_FGD; //1
  168. }
  169. else //概率点
  170. {
  171. bpxls = &prBgdPxls;
  172. fpxls = &prFgdPxls;
  173. bvalue = GC_PR_BGD; //2
  174. fvalue = GC_PR_FGD; //3
  175. }
  176. if( flags & BGD_KEY )
  177. {
  178. bpxls->push_back(p);
  179. circle( mask, p, radius, bvalue, thickness ); //该点处为2
  180. }
  181. if( flags & FGD_KEY )
  182. {
  183. fpxls->push_back(p);
  184. circle( mask, p, radius, fvalue, thickness ); //该点处为3
  185. }
  186. }
  187.  
  188. /*鼠标响应函数,参数flags为CV_EVENT_FLAG的组合*/
  189. void GCApplication::mouseClick( int event, int x, int y, int flags, void* )
  190. {
  191. // TODO add bad args check
  192. switch( event )
  193. {
  194. case CV_EVENT_LBUTTONDOWN: // set rect or GC_BGD(GC_FGD) labels
  195. {
  196. bool isb = (flags & BGD_KEY) != 0,
  197. isf = (flags & FGD_KEY) != 0;
  198. if( rectState == NOT_SET && !isb && !isf )//只有左键按下时
  199. {
  200. rectState = IN_PROCESS; //表示正在画矩形
  201. rect = Rect( x, y, 1, 1 );
  202. }
  203. if ( (isb || isf) && rectState == SET ) //按下了alt键或者shift键,且画好了矩形,表示正在画前景背景点
  204. lblsState = IN_PROCESS;
  205. }
  206. break;
  207. case CV_EVENT_RBUTTONDOWN: // set GC_PR_BGD(GC_PR_FGD) labels
  208. {
  209. bool isb = (flags & BGD_KEY) != 0,
  210. isf = (flags & FGD_KEY) != 0;
  211. if ( (isb || isf) && rectState == SET ) //正在画可能的前景背景点
  212. prLblsState = IN_PROCESS;
  213. }
  214. break;
  215. case CV_EVENT_LBUTTONUP:
  216. if( rectState == IN_PROCESS )
  217. {
  218. rect = Rect( Point(rect.x, rect.y), Point(x,y) ); //矩形结束
  219. rectState = SET;
  220. setRectInMask();
  221. assert( bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty() );
  222. showImage();
  223. }
  224. if( lblsState == IN_PROCESS ) //已画了前后景点
  225. {
  226. setLblsInMask(flags, Point(x,y), false); //画出前景点
  227. lblsState = SET;
  228. showImage();
  229. }
  230. break;
  231. case CV_EVENT_RBUTTONUP:
  232. if( prLblsState == IN_PROCESS )
  233. {
  234. setLblsInMask(flags, Point(x,y), true); //画出背景点
  235. prLblsState = SET;
  236. showImage();
  237. }
  238. break;
  239. case CV_EVENT_MOUSEMOVE:
  240. if( rectState == IN_PROCESS )
  241. {
  242. rect = Rect( Point(rect.x, rect.y), Point(x,y) );
  243. assert( bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty() );
  244. showImage(); //不断的显示图片
  245. }
  246. else if( lblsState == IN_PROCESS )
  247. {
  248. setLblsInMask(flags, Point(x,y), false);
  249. showImage();
  250. }
  251. else if( prLblsState == IN_PROCESS )
  252. {
  253. setLblsInMask(flags, Point(x,y), true);
  254. showImage();
  255. }
  256. break;
  257. }
  258. }
  259.  
  260. /*该函数进行grabcut算法,并且返回算法运行迭代的次数*/
  261. int GCApplication::nextIter()
  262. {
  263. if( isInitialized )
  264. //使用grab算法进行一次迭代,参数2为mask,里面存的mask位是:矩形内部除掉那些可能是背景或者已经确定是背景后的所有的点,且mask同时也为输出
  265. //保存的是分割后的前景图像
  266. grabCut( *image, mask, rect, bgdModel, fgdModel, 1 );
  267. else
  268. {
  269. if( rectState != SET )
  270. return iterCount;
  271.  
  272. if( lblsState == SET || prLblsState == SET )
  273. grabCut( *image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_MASK );
  274. else
  275. grabCut( *image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_RECT );
  276.  
  277. isInitialized = true;
  278. }
  279. iterCount++;
  280.  
  281. bgdPxls.clear(); fgdPxls.clear();
  282. prBgdPxls.clear(); prFgdPxls.clear();
  283.  
  284. return iterCount;
  285. }
  286.  
  287. GCApplication gcapp;
  288.  
  289. static void on_mouse( int event, int x, int y, int flags, void* param )
  290. {
  291. gcapp.mouseClick( event, x, y, flags, param );
  292. }
  293.  
  294. int main( int argc, char** argv )
  295. {
  296. string filename;
  297. cout<<" Grabcuts ! \n";
  298. cout<<"input image name: "<<endl;
  299. cin>>filename;
  300.  
  301. Mat image = imread( filename, 1 );
  302. if( image.empty() )
  303. {
  304. cout << "\n Durn, couldn't read image filename " << filename << endl;
  305. return 1;
  306. }
  307.  
  308. help();
  309.  
  310. const string winName = "image";
  311. cvNamedWindow( winName.c_str(), CV_WINDOW_AUTOSIZE );
  312. cvSetMouseCallback( winName.c_str(), on_mouse, 0 );
  313.  
  314. gcapp.setImageAndWinName( image, winName );
  315. gcapp.showImage();
  316.  
  317. for(;;)
  318. {
  319. int c = cvWaitKey(0);
  320. switch( (char) c )
  321. {
  322. case '\x1b':
  323. cout << "Exiting ..." << endl;
  324. goto exit_main;
  325. case 'r':
  326. cout << endl;
  327. gcapp.reset();
  328. gcapp.showImage();
  329. break;
  330. case 'n':
  331. ComputeTime ct ;
  332. ct.Begin();
  333.  
  334. int iterCount = gcapp.getIterCount();
  335. cout << "<" << iterCount << "... ";
  336. int newIterCount = gcapp.nextIter();
  337. if( newIterCount > iterCount )
  338. {
  339. gcapp.showImage();
  340. cout << iterCount << ">" << endl;
  341. cout<<"运行时间: "<<ct.End()<<endl;
  342. }
  343. else
  344. cout << "rect must be determined>" << endl;
  345. break;
  346. }
  347. }
  348.  
  349. exit_main:
  350. cvDestroyWindow( winName.c_str() );
  351. return 0;
  352. }

lazy snapping代码实现:

  1. // LazySnapping.cpp : 定义控制台应用程序的入口点。
  2. //
  3. /* author: zhijie Lee
  4. * home page: lzhj.me
  5. * 2012-02-06
  6. */
  7. #include "stdafx.h"
  8. #include <cv.h>
  9. #include <highgui.h>
  10. #include "graph.h"
  11. #include <vector>
  12. #include <iostream>
  13. #include <cmath>
  14. #include <string>
  15.  
  16. using namespace std;
  17.  
  18. typedef Graph<float,float,float> GraphType;
  19.  
  20. class LasySnapping
  21. {
  22.  
  23. public :
  24. LasySnapping();
  25.  
  26. ~LasySnapping()
  27. {
  28. if(graph)
  29. {
  30. delete graph;
  31. }
  32. };
  33. private :
  34. vector<CvPoint> forePts;
  35. vector<CvPoint> backPts;
  36. IplImage* image;
  37. // average color of foreground points
  38. unsigned char avgForeColor[3];
  39. // average color of background points
  40. unsigned char avgBackColor[3];
  41. public :
  42. void setImage(IplImage* image)
  43. {
  44. this->image = image;
  45. graph = new GraphType(image->width*image->height,image->width*image->height*2);
  46. }
  47. // include-pen locus
  48. void setForegroundPoints(vector<CvPoint> pts)
  49. {
  50. forePts.clear();
  51. for(int i =0; i< pts.size(); i++)
  52. {
  53. if(!isPtInVector(pts[i],forePts))
  54. {
  55. forePts.push_back(pts[i]);
  56. }
  57. }
  58. if(forePts.size() == 0)
  59. {
  60. return;
  61. }
  62. int sum[3] = {0};
  63. for(int i =0; i < forePts.size(); i++)
  64. {
  65. unsigned char* p = (unsigned char*)image->imageData + forePts[i].x * 3
  66. + forePts[i].y*image->widthStep;
  67. sum[0] += p[0];
  68. sum[1] += p[1];
  69. sum[2] += p[2];
  70. }
  71. cout<<sum[0]<<" " <<forePts.size()<<endl;
  72. avgForeColor[0] = sum[0]/forePts.size();
  73. avgForeColor[1] = sum[1]/forePts.size();
  74. avgForeColor[2] = sum[2]/forePts.size();
  75. }
  76. // exclude-pen locus
  77. void setBackgroundPoints(vector<CvPoint> pts)
  78. {
  79. backPts.clear();
  80. for(int i =0; i< pts.size(); i++)
  81. {
  82. if(!isPtInVector(pts[i],backPts))
  83. {
  84. backPts.push_back(pts[i]);
  85. }
  86. }
  87. if(backPts.size() == 0)
  88. {
  89. return;
  90. }
  91. int sum[3] = {0};
  92. for(int i =0; i < backPts.size(); i++)
  93. {
  94. unsigned char* p = (unsigned char*)image->imageData + backPts[i].x * 3 +
  95. backPts[i].y*image->widthStep;
  96. sum[0] += p[0];
  97. sum[1] += p[1];
  98. sum[2] += p[2];
  99. }
  100. avgBackColor[0] = sum[0]/backPts.size();
  101. avgBackColor[1] = sum[1]/backPts.size();
  102. avgBackColor[2] = sum[2]/backPts.size();
  103. }
  104.  
  105. // return maxflow of graph
  106. int runMaxflow();
  107. // get result, a grayscale mast image indicating forground by 255 and background by 0
  108. IplImage* getImageMask();
  109.  
  110. private :
  111.  
  112. float colorDistance(unsigned char* color1, unsigned char* color2);
  113. float minDistance(unsigned char* color, vector<CvPoint> points);
  114. bool isPtInVector(CvPoint pt, vector<CvPoint> points);
  115. void getE1(unsigned char* color,float* energy);
  116. float getE2(unsigned char* color1,unsigned char* color2);
  117.  
  118. GraphType *graph;
  119. };
  120.  
  121. LasySnapping::LasySnapping()
  122. {
  123. graph = NULL;
  124. avgForeColor[0] = 0;
  125. avgForeColor[1] = 0;
  126. avgForeColor[2] = 0;
  127.  
  128. avgBackColor[0] = 0;
  129. avgBackColor[1] = 0;
  130. avgBackColor[2] = 0;
  131.  
  132. }
  133.  
  134. float LasySnapping::colorDistance(unsigned char* color1, unsigned char* color2)
  135. {
  136.  
  137. return sqrt(((float)color1[0]-(float)color2[0])*((float)color1[0]-(float)color2[0])+
  138. ((float)color1[1]-(float)color2[1])*((float)color1[1]-(float)color2[1])+
  139. ((float)color1[2]-(float)color2[2])*((float)color1[2]-(float)color2[2]));
  140. }
  141.  
  142. float LasySnapping::minDistance(unsigned char* color, vector<CvPoint> points)
  143. {
  144. float distance = -1;
  145. for(int i =0 ; i < points.size(); i++)
  146. {
  147. unsigned char* p = (unsigned char*)image->imageData + points[i].y * image->widthStep +
  148. points[i].x * image->nChannels;
  149. float d = colorDistance(p,color);
  150. if(distance < 0 )
  151. {
  152. distance = d;
  153. }
  154. else
  155. {
  156. if(distance > d)
  157. {
  158. distance = d;
  159. }
  160. }
  161. }
  162.  
  163. return distance;
  164. }
  165.  
  166. bool LasySnapping::isPtInVector(CvPoint pt, vector<CvPoint> points)
  167. {
  168. for(int i =0 ; i < points.size(); i++)
  169. {
  170. if(pt.x == points[i].x && pt.y == points[i].y)
  171. {
  172. return true;
  173. }
  174. }
  175. return false;
  176. }
  177. void LasySnapping::getE1(unsigned char* color,float* energy)
  178. {
  179. // average distance
  180. float df = colorDistance(color,avgForeColor);
  181. float db = colorDistance(color,avgBackColor);
  182. // min distance from background points and forground points
  183. // float df = minDistance(color,forePts);
  184. // float db = minDistance(color,backPts);
  185. energy[0] = df/(db+df);
  186. energy[1] = db/(db+df);
  187. }
  188.  
  189. float LasySnapping::getE2(unsigned char* color1,unsigned char* color2)
  190. {
  191. const float EPSILON = 0.01;
  192. float lambda = 100;
  193. return lambda/(EPSILON+
  194. (color1[0]-color2[0])*(color1[0]-color2[0])+
  195. (color1[1]-color2[1])*(color1[1]-color2[1])+
  196. (color1[2]-color2[2])*(color1[2]-color2[2]));
  197. }
  198.  
  199. int LasySnapping::runMaxflow()
  200. {
  201. const float INFINNITE_MAX = 1e10;
  202. int indexPt = 0;
  203. for(int h = 0; h < image->height; h ++)
  204. {
  205. unsigned char* p = (unsigned char*)image->imageData + h *image->widthStep;
  206. for(int w = 0; w < image->width; w ++)
  207. {
  208. // calculate energe E1
  209. float e1[2]={0};
  210. if(isPtInVector(cvPoint(w,h),forePts))
  211. {
  212. e1[0] =0;
  213. e1[1] = INFINNITE_MAX;
  214. }
  215. else if
  216. (isPtInVector(cvPoint(w,h),backPts))
  217. {
  218. e1[0] = INFINNITE_MAX;
  219. e1[1] = 0;
  220. }
  221. else
  222. {
  223. getE1(p,e1);
  224. }
  225.  
  226. // add node
  227. graph->add_node();
  228. graph->add_tweights(indexPt, e1[0],e1[1]);
  229.  
  230. // add edge, 4-connect
  231. if(h > 0 && w > 0)
  232. {
  233. float e2 = getE2(p,p-3);
  234. graph->add_edge(indexPt,indexPt-1,e2,e2);
  235. e2 = getE2(p,p-image->widthStep);
  236. graph->add_edge(indexPt,indexPt-image->width,e2,e2);
  237. }
  238.  
  239. p+= 3;
  240. indexPt ++;
  241. }
  242. }
  243.  
  244. return graph->maxflow();
  245. }
  246.  
  247. IplImage* LasySnapping::getImageMask()
  248. {
  249. IplImage* gray = cvCreateImage(cvGetSize(image),8,1);
  250. int indexPt =0;
  251. for(int h =0; h < image->height; h++)
  252. {
  253. unsigned char* p = (unsigned char*)gray->imageData + h*gray->widthStep;
  254. for(int w =0 ;w <image->width; w++)
  255. {
  256. if (graph->what_segment(indexPt) == GraphType::SOURCE)
  257. {
  258. *p = 0;
  259. }
  260. else
  261. {
  262. *p = 255;
  263. }
  264.  
  265. p++;
  266. indexPt ++;
  267. }
  268. }
  269. return gray;
  270. }
  271.  
  272. // global
  273. vector<CvPoint> forePts;
  274. vector<CvPoint> backPts;
  275. int currentMode = 0;// indicate foreground or background, foreground as default
  276. CvScalar paintColor[2] = {CV_RGB(0,0,255),CV_RGB(255,0,0)};
  277.  
  278. IplImage* image = NULL;
  279. char* winName = "lazySnapping";
  280. IplImage* imageDraw = NULL;
  281. const int SCALE = 4;
  282.  
  283. void on_mouse( int event, int x, int y, int flags, void* )
  284. {
  285. if( event == CV_EVENT_LBUTTONUP )
  286. {
  287. if(backPts.size() == 0 && forePts.size() == 0)
  288. {
  289. return;
  290. }
  291. LasySnapping ls;
  292. IplImage* imageLS = cvCreateImage(cvSize(image->width/SCALE,image->height/SCALE),
  293. 8,3);
  294. cvResize(image,imageLS);
  295. ls.setImage(imageLS);
  296. ls.setBackgroundPoints(backPts);
  297. ls.setForegroundPoints(forePts);
  298. ls.runMaxflow();
  299. IplImage* mask = ls.getImageMask();
  300. IplImage* gray = cvCreateImage(cvGetSize(image),8,1);
  301. cvResize(mask,gray);
  302. // edge
  303. cvCanny(gray,gray,50,150,3);
  304.  
  305. IplImage* showImg = cvCloneImage(imageDraw);
  306. for(int h =0; h < image->height; h ++)
  307. {
  308. unsigned char* pgray = (unsigned char*)gray->imageData + gray->widthStep*h;
  309. unsigned char* pimage = (unsigned char*)showImg->imageData + showImg->widthStep*h;
  310. for(int width =0; width < image->width; width++)
  311. {
  312. if(*pgray++ != 0 )
  313. {
  314. pimage[0] = 0;
  315. pimage[1] = 255;
  316. pimage[2] = 0;
  317. }
  318. pimage+=3;
  319. }
  320. }
  321. cvSaveImage("t.bmp",showImg);
  322. cvShowImage(winName,showImg);
  323. cvReleaseImage(&imageLS);
  324. cvReleaseImage(&mask);
  325. cvReleaseImage(&showImg);
  326. cvReleaseImage(&gray);
  327. }
  328. else if( event == CV_EVENT_LBUTTONDOWN )
  329. {
  330.  
  331. }
  332. else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON))
  333. {
  334. CvPoint pt = cvPoint(x,y);
  335. if(currentMode == 0)
  336. {//foreground
  337. forePts.push_back(cvPoint(x/SCALE,y/SCALE));
  338. }
  339. else
  340. {//background
  341. backPts.push_back(cvPoint(x/SCALE,y/SCALE));
  342. }
  343. cvCircle(imageDraw,pt,2,paintColor[currentMode]);
  344. cvShowImage(winName,imageDraw);
  345. }
  346. }
  347. int main(int argc, char** argv)
  348. {
  349. //if(argc != 2)
  350. //{
  351. // cout<<"command : lazysnapping inputImage"<<endl;
  352. // return 0;
  353. // }
  354.  
  355. string image_name;
  356. cout<<"input image name: "<<endl;
  357. cin>>image_name;
  358.  
  359. cvNamedWindow(winName,1);
  360. cvSetMouseCallback( winName, on_mouse, 0);
  361.  
  362. image = cvLoadImage(image_name.c_str(),CV_LOAD_IMAGE_COLOR);
  363. imageDraw = cvCloneImage(image);
  364. cvShowImage(winName, image);
  365. for(;;)
  366. {
  367. int c = cvWaitKey(0);
  368. c = (char)c;
  369. if(c == 27)
  370. {//exit
  371. break;
  372. }
  373. else if(c == 'r')
  374. {//reset
  375. image = cvLoadImage(image_name.c_str(),CV_LOAD_IMAGE_COLOR);
  376. imageDraw = cvCloneImage(image);
  377. forePts.clear();
  378. backPts.clear();
  379. currentMode = 0;
  380. cvShowImage(winName, image);
  381. }
  382. else if(c == 'b')
  383. {//change to background selection
  384. currentMode = 1;
  385. }else if(c == 'f')
  386. {//change to foreground selection
  387. currentMode = 0;
  388. }
  389. }
  390. cvReleaseImage(&image);
  391. cvReleaseImage(&imageDraw);
  392. return 0;
  393. }

参考文献

[1] Y. Boykov, and M. P. Jolly, “Interactive graph cuts for optimal boundary and region segmentation ofobjects in N-D images”,Proceeding ofIEEE International Conference on Computer
Vision
, 1:105~112, July 2001.

[2] C. Rother, A. Blake, and V. Kolmogorov, “Grabcut – interactive foreground extractionusing iterated graph cuts”,Proceedingsof ACM SIGGRAPH 2004, 23(3):307~312, August
2004.

[3] A. Agarwala, M. Dontcheva, M. Agrawala,et al, “Interactive digital photomontage”,Proceedings of ACM SIGGRAPH 2004, 23(3):294~302, August 2004.

[4] Y. Li, J. Sun, C. Tang,et al, “Interacting withimages: Lazy snapping”,Proceedingsof ACM SIGGRAPH 2004, 23(3):303~308, August 2004.

[5] A. Blake, C. Rother, M. Brown,et al, “Interactive ImageSegmentation using an adaptive GMMRF model”.Proceedings of European Conference on Computer Vision, pp.
428~441,May 2004.

[6] V. Kwatra, A. Schodl, I. Essa,et al, “Graphcut Textures:Image and Video Synthesis Using Graph Cuts”.Proceedings of ACM Siggraph 2003, pp.277~286, Augst 2003.

部分代码与文档是早些时候收集的,出处找不到了,还请原作者看到后联系注明。

基于GraphCuts图割算法的图像分割----OpenCV代码与实现的更多相关文章

  1. GrabCut in One Cut(基于图割算法grabcut的一次快速图像分割的OpenCV实现)----目前效果最好的图割

     One cut in grabcut(grabcut算法的非迭代实现?) 本文针对交互式图像分割中的图割算法,主要想翻译一篇英文文献.不足之处请大家指正. 这是博主近期看到的效果最好,实现最简单 ...

  2. k-means算法MATLAB和opencv代码

    上一篇博客写了k-means聚类算法和改进的k-means算法.这篇博客就贴出相应的MATLAB和C++代码. 下面是MATLAB代码,实现用k-means进行切割: %%%%%%%%%%%%%%%% ...

  3. 图像分割之(二)Graph Cut(图割)

    zouxy09@qq.com http://blog.csdn.net/zouxy09 上一文对主要的分割方法做了一个概述.那下面我们对其中几个比较感兴趣的算法做个学习.下面主要是Graph Cut, ...

  4. 基于visual Studio2013解决算法导论之053图的邻接表表示

     题目 图的邻接表表示 解决代码及点评 // 图的邻接表表示.cpp : 定义控制台应用程序的入口点. // #include <iostream> #include <sta ...

  5. PCL—低层次视觉—点云分割(最小割算法)

    1.点云分割的精度 在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法.基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出 ...

  6. PCL—点云分割(最小割算法) 低层次点云处理

    1.点云分割的精度 在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法.基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出 ...

  7. ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)

    [题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...

  8. 从Random Walk谈到Bacterial foraging optimization algorithm(BFOA),再谈到Ramdom Walk Graph Segmentation图分割算法

    1. 从细菌的趋化性谈起 0x1:物质化学浓度梯度 类似于概率分布中概率密度的概念.在溶液中存在不同的浓度区域. 如放一颗糖在水盆里,糖慢慢溶于水,糖附近的水含糖量比远离糖的水含糖量要高,也就是糖附近 ...

  9. 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)

    其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...

随机推荐

  1. IP_ADD_MEMBERSHIP 失败

    /*将本机加入多播组*/ err = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,&mreq, sizeof(mreq)); if (err &l ...

  2. Hibernate之实体关系映射

    延迟加载与即时加载 例如Person类和Email类是一对多关系,如果设为即时加载,当加载Person时,会自动加载Email,如果设置为延迟加载,当第一次调用person.getEmails()时才 ...

  3. HTTP状态码总结

    HTTP状态码(HTTP Status Code)是用以表示网页服务器HTTP响应状态的3位数字代码.有些 App 端接口与 HTML 接口用的是同一个,所以做移动端开发也有必要了解一下HTTP状态码 ...

  4. android galley实现画廊效果

    青春流水指间. 每段路,都有即将要来的旅程 每颗心,都有值得期待的成分 Android之ImageSwitcher,Gallery用法 今天在做一个软件界面时用到了ImageSwitcher和Gall ...

  5. 学习TensorFlow,TensorBoard可视化网络结构和参数

    在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可 ...

  6. 复习java逻辑---实现猜数字游戏

    package shopping; import java.util.*; public class SendGiftMenu { public static void main(String[] a ...

  7. 4.关于QT中的QFile文件操作,QBuffer,Label上添加QPixmap,QByteArray和QString之间的区别,QTextStream和QDataStream的区别,QT内存映射(

     新建项目13IO 13IO.pro HEADERS += \ MyWidget.h SOURCES += \ MyWidget.cpp QT += gui widgets network CON ...

  8. 02_IO操作的基本规律(InputStream,OutputStream,Reader,Writer,FileReader,FileWriter,BufferedReader,BufferedWri

     模拟BufferedInputStream,编写一个类 package toto.IO; import java.io.IOException; import java.io.InputStre ...

  9. 【java虚拟机序列】java中的垃圾回收与内存分配策略

    在[java虚拟机系列]java虚拟机系列之JVM总述中我们已经详细讲解过java中的内存模型,了解了关于JVM中内存管理的基本知识,接下来本博客将带领大家了解java中的垃圾回收与内存分配策略. 垃 ...

  10. 剑指Offer——二分查找算法

    剑指Offer--二分查找算法 前言 本片博文主要讲解查找算法的相关知识.重点介绍二分查找. 二分查找算法是在有序数组中用到的较为频繁的一种查找算法,在未接触二分查找算法时,最通用的一种做法是,对数组 ...