原题链接

题意简述

给出一个n(n≤105)个数的序列a,足够聪明的AB两人轮流进行以下操作:

令一个大于1的数减1,然后所有数除以gcd{a}。

如果一个人不能操作了,那么他就输了。

输入保证所有数都是正整数并且gcd{a}=1。

分析

这是一道和奇偶性有关的题目。

很容易知道拿到1,1,1,...,1就输了,此时手里数的和sum等于n。

考虑sum奇偶性的转换关系。

或者再展开一点:

偶-奇必然的很好理解,重点考虑一下sum为奇数的情形。

奇(-偶)-奇 要求gcd为偶数,因为偶/奇=偶。因此原数列%2必然是000…01的形式,而我可以将其变为000…11从而形成奇-偶 。所以奇-奇一定条件下可选的,奇-偶任何条件下可行的。

由此再考虑n的奇偶性对答案的影响。

  1. n为偶数

    能保持sum为奇数的一方一定不会输。既然sum一直是奇数,那么就一定不会得到1,1,1,...,1的状态,必胜。而因为拿到奇数的一方一定可以给对手一个偶数,而对手只能无可奈何地还你一个奇数。所以初始sum为奇数则先手必胜,否则必败。

    时间复杂度为O(n)。
  2. n为奇数

    能保持sum为偶数的一方一定不会输。但是拿到偶数的一方需要保证对手不会还回来一个奇数,下面证明这一点一定可以做到。

    证明

    首先奇数方要是想还给对手一个奇数必然要使gcd不为1,所以原数列%gcd必然是000…01的形式。再考虑这个状态是怎么达到的:



    对于000…11,000…02,000…1k,000…0(k+1)这四种状态另一方都有办法规避000…01的结果。所以拿到偶数的一方一定能保证下一轮自己还是偶数。

    因此初始sum为偶数的话先手必胜。

    时间复杂度为O(n)。

    但是初始sum是奇数并不意味着必败;因为此时还没有另一方的干扰,是有可能给对手一个奇数的。但是由于你可能只有极少的选择方案,这给了对手可乘之机:对手也有可能还回来一个奇数。以此循环往复,无法给对手奇数的一方会输掉游戏。

    因为每次都会给所有数除以一个大于1的gcd,所以最多往复log2(min{a})次,其中每次操作的复杂度是O(n)。时间复杂度最大为O(n⋅log2(min{a}))。

总时间复杂度最大为O(n⋅log2(min{a}))。

实现

只有n,sum均为奇数时无法通过判断n和sum的奇偶性来得出答案。

计算出前缀gcdg1和后缀gcdg2,然后计算gcd{g1[i−1],a[i]−1,g2[i+1]},如果 (sum−1)/gcd 为奇数就令所有数除以gcd,然后轮到对手。若没有可能的gcd,GG。

代码

//Decrementing
#include <cstdio>
typedef long long lint;
int const N=1e5+10;
int n,a[N];
int gcd(int x,int y)
{
if(x==-1 || y==-1) return -x*y;
if(x==0) return y;
else return gcd(y%x,x);
}
int g1[N],g2[N];
int main()
{
scanf("%d",&n);
lint sum=0;
for(int i=1;i<=n;i++) scanf("%d",&a[i]),sum+=a[i];
if(n%2==0)
{
if(sum%2==1) printf("First");
else printf("Second");
return 0;
}
if(sum%2==0) {printf("First"); return 0;}
int cur=0;
while(true)
{
bool flag=false;
sum=0;
for(int i=1;i<=n;i++) sum+=a[i];
g1[0]=-1; g2[n+1]=-1;
for(int i=2;i<=n;i++) g1[i]=gcd(g1[i-1],a[i]);
for(int i=n-1;i>=1;i--) g2[i]=gcd(g2[i+1],a[i]);
int g;
for(int i=1;i<=n&&!flag;i++)
{
if(a[i]==1) continue;
g=gcd(gcd(g1[i-1],g2[i+1]),a[i]-1);
if(((sum-1)/g)%2==1) flag=true;
}
if(flag)
for(int i=1;i<=n;i++) a[i]/=g;
else
{
if(cur==0) printf("Second");
else printf("First");
return 0;
}
cur^=1;
}
return 0;
}

注意

挺好写的,主要是思维难度高

AGC010 - D: Decrementing的更多相关文章

  1. 【AtCoder】AGC010

    AGC010 A - Addition 如果所有数加起来是偶数那么一定可以,否则不行 #include <bits/stdc++.h> #define fi first #define s ...

  2. Agc010_D Decrementing

    今天本人因调了上篇博客的题而脑壳不适,不想颓题,因此有了这篇博客. 但是博客毕竟得讲点什么,想想有没有什么代码短的. 哦,好像有,就Agc010_D Decrementing好了. Alice和Bob ...

  3. [AtCoderContest010D]Decrementing

    [AtCoderContest010D]Decrementing 试题描述 There are \(N\) integers written on a blackboard. The \(i\)-th ...

  4. AGC010

    AGC010 A [过水已隐藏] B 这题推完了还是不会/kk真的毒瘤 考虑每次会减少的总和是\(n(n+1)/2\),用原来的和除以这个可以得到操作次数\(m\)(不是整数无解) 再考虑相邻两个数\ ...

  5. AGC010 - C: Cleaning

    原题链接 题意简述 给出一棵个节点的树,每个点有点权.每次可以选择两个叶节点并将连接它们的路径上的节点的点权-1(包括叶节点).求能否将所有节点的点权都变为0. 分析 先考虑最简单的情况.在这种情况下 ...

  6. AGC010 - B: Boxes

    原题链接 题意简述 给出一个由个数构成的环,每次可以选择一个位置并从这个数起顺时针依次对每个数-1,-2,-3,-,-n.问能否将所有数全变为0. 分析 考虑一次操作对环带来了什么影响. (在后加一个 ...

  7. AGC010 - A: Addition

    原题链接 题意简述 给出一个个数的数列,每次选出两个奇偶性相同的数合成一个数,问最终能否只剩下一个数. 分析 非常简单的一道题. 两个偶数可以合成一个偶数,两个奇数也能合成一个偶数.所以合并偶数时偶数 ...

  8. AGC 010D.Decrementing(博弈)

    题目链接 \(Description\) 给定\(n\)个数\(A_i\),且这\(n\)个数的\(GCD\)为\(1\).两个人轮流进行如下操作: 选择一个\(>1\)的数使它\(-1\). ...

  9. 【AGC010D】Decrementing

    Solution 日常博弈论做不出来. 首先,数值全部为1的局面先手必败. 在接下来的过程中,我们只关注那些大于1的数值. 按照官方题解的思路,首先想一个简化版的问题:没有除的操作,其余相同.那么局面 ...

随机推荐

  1. Maven以及在Maven在Myeclipse中的配置

    一.maven安装与配置1.到官网http://maven.apache.org/download.cgi下载maven压缩包,解压到指定文件夹.如:D:\apache-maven-3.3.92.添加 ...

  2. VMware PowerCLi 使用示例

    这几天研究PowerCLI,积累了几个例子,记下来,以便以后或者大家使用.部分例子来着网络,具体出处参考附录 1 获取vm 磁盘 和磁盘对应的datastore的信息 这个例子可以针对一台虚机有多个磁 ...

  3. CRC检验

    CRC(循环冗余检验码) 基本原理:在K位信息码后面加上R位校验形成N位编码(即CRC码),事先需要约定一个生成多项式G(x),校验码生成过程:将K位信息码向左移动R位然后mol(其实就是按位异或)上 ...

  4. 各模拟器adb连接端口

    如果执行自动化测试,在没有真机的情况下,我们唯一的选择便是模拟器.目前市面上有很多模拟器,他们使用adb连接时都会有不同的默认接口,当adb无法自动连接模拟器时,手动使用ip+端口连接是很好的选择.下 ...

  5. 【Java入门提高篇】Day13 Java中的反射机制

    前一段时间一直忙,所以没什么时间写博客,拖了这么久,也该更新更新了.最近看到各种知识付费的推出,感觉是好事,也是坏事,好事是对知识沉淀的认可与推动,坏事是感觉很多人忙于把自己的知识变现,相对的在沉淀上 ...

  6. HTML5详解(一)

    本文最初发表于博客园,并在GitHub上持续更新前端的系列文章.欢迎在GitHub上关注我,一起入门和进阶前端. 以下是正文. HTML5的介绍 Web 技术发展时间线 1991 HTML 1994 ...

  7. .Neter玩转Linux系列之四:Linux下shell介绍以及TCP、IP基础

    基础篇 .Neter玩转Linux系列之一:初识Linux .Neter玩转Linux系列之二:Linux下的文件目录及文件目录的权限 .Neter玩转Linux系列之三:Linux下的分区讲解 .N ...

  8. selenium打开chrome浏览器代码

    import os from selenium import webdriver chromedriver = "C:\Program Files (x86)\Google\Chrome\A ...

  9. BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1070  Solved: 596[Submit][Status] ...

  10. 2018-01-08 学习随笔 SpirngBoot整合Mybatis进行主从数据库的动态切换,以及一些数据库层面和分布式事物的解决方案

    先大概介绍一下主从数据库是什么?其实就是两个或N个数据库,一个或几个主负责写(当然也可以读),另一个或几个从只负责读.从数据库要记录主数据库的具体url以及BigLOG(二进制日志文件)的参数.原理就 ...