3576: [Hnoi2014]江南乐

Time Limit: 30 Sec  Memory Limit: 512 MB
Submit: 1929  Solved: 686
[Submit][Status][Discuss]

Description

小A是一个名副其实的狂热的回合制游戏玩家。在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏。

游戏的规则是这样的,首先给定一个数F,然后游戏系统会产生T组游戏。每一组游戏包含N堆石子,小A和他的对手轮流操作。每次操作时,操作者先选定一个不小于2的正整数M

(M是操作者自行选定的,而且每次操作时可不一样),然后将任意一堆数量不小于F的石子分成M堆,并且满足这M堆石子中石子数最多的一堆至多比石子数最少的一堆多1(即分的尽量平均,事实上按照这样的分石子万法,选定M和一堆石子后,它分出来的状态是固定的)。当一个玩家不能操作的时候,也就是当每一堆石子的数量都严格小于F时,他就输掉。(补充:先手从N堆石子中选择一堆数量不小于F的石子分成M堆后,此时共有N+M-1)堆石子,接下来小A从这N+M-1堆石子中选择一堆数量不小于F的石子,依此类推。
    小A从小就是个有风度的男生,他邀请他的对手作为先手。小A现在想要知道,面对给定的一组游戏,而且他的对手也和他一样聪明绝顶的话,究竟谁能够获得胜利?

Input

输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。
    接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。

Output

输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。

Sample Input

4 3
1 1
1 2
1 3
1 5

Sample Output

0 0 1 1

HINT

对于100%的数据,T<100,N<100,F<100000,每堆石子数量<100000。

以上所有数均为正整数。

Source

首先每一堆石子是单独的是绝对可以肯定的,

所以预处理好所有的石子个数,

桌面处理,就是直接暴力枚举怎么分,这样的话是O(n^2)

然后我们发现。比如将100分成40堆,41堆,这类都是2或者3,而且这样的话也就是许多分成

的种类是相同的,那么这样总共就√n种不同的值,

但是每种的奇偶性是比较关键的,

100分成40堆,2的话20堆,3的话20堆,

100分成41堆,2的话23堆,3的话18堆,

100分成42堆,2的话26堆,3的话16堆。

发现什么

我们代数来证明,当n为奇数,一定是一部分奇数,一部分偶数

因为分成的两种的话一定是奇偶性不同的,所以只有两者情况

分相差1堆时正好反应。

当n为偶数也是一样的。

所以只需n分成x与x+1两部分时,我们只需要做相邻两者即可,如100只需要做40和41两者,就可以了,

100/34=2 然后调到100/2 +1去,这样预处理复杂度是n√n

后面用sg定理就可以了。

 #pragma GCC optimize(2)
#pragma G++ optimize(2)
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring> #define N 100007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int T,F,Tim;
int a[N],sg[N];
int boo[N]; void prepare()
{
for(int x=F;x<=;x++)
{
Tim++;int small,num,ys,now,nxt;
for (int i=;i<=x;i=nxt+)//x与x+1是一样的
{
small=x/i,ys=x%i;
num=i-ys,now=;
if(num&)now^=sg[small];
if(ys&)now^=sg[small+];
boo[now]=Tim;
nxt=min(x/small,x);
if(i+<=nxt)
{
now=,ys=x%(i+);
num=(i+)-ys;
if(num&)now^=sg[small];
if(ys&)now^=sg[small+];
boo[now]=Tim;
}
}
int mex=;
while(boo[mex]==Tim)mex++;
sg[x]=mex;
}
}
int main()
{
memset(sg,,sizeof(sg));
T=read(),F=read();
prepare();
while(T--)
{
int n=read(),ans=,x;
for(int i=;i<=n;i++)
x=read(),ans^=sg[x];
if(ans)printf("%d",);
else printf("%d",);
if(T)printf(" ");
}
}

bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理的更多相关文章

  1. BZOJ 3576: [Hnoi2014]江南乐 (SG函数)

    题意 有nnn堆石子,给定FFF,每次操作可以把一堆石子数不小于FFF的石子平均分配成若干堆(堆数>1>1>1). 平均分配即指分出来的石子数中最大值减最小值不超过111.不能进行操 ...

  2. bzoj 3576: [Hnoi2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...

  3. bzoj 3576: [Hnoi2014]江南乐【博弈论】

    这个东西卡常--预处理的时候要先把i%j,i/j都用变量表示,还要把%2变成&1-- 首先每一堆都是不相关子游戏,所以对于每一堆求sg即可 考虑暴力枚举石子数i,分割块数j,分解成子问题求xo ...

  4. 【BZOJ】3576: [Hnoi2014]江南乐

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3576 很显然,这是一个multi-nim游戏. 注意:1.一个点的SG值就是一个不等于它的 ...

  5. 洛谷 P3235 [HNOI2014]江南乐 解题报告

    P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...

  6. P3235-[HNOI2014]江南乐【整除分块,SG函数】

    正题 题目链接:https://www.luogu.com.cn/problem/P3235 题目大意 \(T\)组游戏,固定给出\(F\).每组游戏有\(n\)个石头,每次操作的人可以选择一个数量不 ...

  7. 【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...

  8. luogu P3235 [HNOI2014]江南乐

    传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...

  9. 【bzoj3576】 Hnoi2014—江南乐

    http://www.lydsy.com/JudgeOnline/problem.php?id=3576 (题目链接) 题意 给出一个数$F$,然后$n$堆石子,每次操作可以把一堆不少于$F$的石子分 ...

随机推荐

  1. jenkins插件之如何优雅的生成版本号

    一.简介 在持续集成中,版本管理是非常重要的一部分,本章将介绍如何Version Number Plug插件生成优雅的版本号. 二.安装 系统管理-->插件管理 搜索 Version Numbe ...

  2. c#目录以及子目录下图片批量缩放,像素不变,图像大小改变

    采用多线程,整体效果 图像根目录黏贴或者手工选择,点击开始,进行目录底下图片筛查.采用多线程,点击开始按钮,开启线程,这样UI不会卡住 private void button2_Click(objec ...

  3. linux 动态库的符号冲突问题

    最近,给同事定位了一个符号表的冲突问题,简单记录一下. A代码作为静态链接库,被包含进了B代码,然后编译成了动态链接库,B.so A代码同时作为静态链接库,被编译进入了main的主代码. main函数 ...

  4. linux_网站计量单位

    IP 独立IP数,是不同IP地址的计算机访问网站时被计算的总次数,独立IP数是衡量网站流量的一个重要指标,一般一天内相同IP地址的客户端访问网页只被计算为一次,记录独立IP的时间为一天或一个月,目前通 ...

  5. 爬取知名社区技术文章_article_3

    爬虫主逻辑处理,获取字段,获取主url和子url #!/usr/bin/python3 # -*- coding: utf-8 -*- import scrapy from scrapy.http i ...

  6. ELK入门级介绍--打造实时日志查询系统

    这几天一直在研究ElasticSearch,在网上看到一篇好的文章和大家分享. ELK平台介绍 在搜索ELK资料的时候,发现这篇文章比较好,于是摘抄一小段: 以下内容来自:http://baidu.b ...

  7. 转-WebService到底是什么?

    原文链接:WebService到底是什么? 一.序言 大家或多或少都听过WebService(Web服务),有一段时间很多计算机期刊.书籍和网站都大肆的提及和宣传WebService技术,其中不乏很多 ...

  8. 怎样查看MYSQL数据库的端口号

    show variables like '%port%';

  9. ie下常见的css兼容问题

    1.border-radius 边框圆角 IE8及以下浏览器不支持border-radius webkit引擎支持-webkit-borderradius 私有属性 mozilla Gecko引擎支持 ...

  10. shell第一篇

    前两天不停的再看内核相关的内容,了解内核的形成.内核的执行流程.内核的作用,结果是舍近求远. 其实我只是想了解一下shell的工作,shell与内核有关,但并不需要我么真正去做什么,至少对于我这样额初 ...