深度解读GoogleNet之Inception V1
GoogleNet设计的目的
GoogleNet设计的初衷是为了提高在网络里面的计算资源的利用率。
Motivation
网络越大,意味着网络的参数较多,尤其当数据集很小的时候,网络更容易发生过拟合。网络越大带来的另一个缺点就是计算资源的利用率会急剧增加。例如,如果两个卷积层是串联的,他们滤波器数量中任何一个均匀增加都会导致计算资源的二次方浪费。解决这两个问题的方法是用稀疏连接的结构代替全连接。在早期为了打破网络的对称性和提高学习能力,传统的网络都使用随机的稀疏连接,但是计算机硬件对非均匀的稀疏连接的计算效率很差,所以在Alexnet中又启用了全连接,为的是更好的优化并行运算。Incpetion结构因此被提出,它既能保持网络结构的稀疏性,又能利用密集矩阵的高性能计算。
Inception结构
a
1.该结构采用了不同大小的卷积核,较小的卷积能够提取局部特征,较大的卷积能够渐近全局特征,而且不同大小的卷积有不同的感受野,能够提高网络的鲁棒性,最后通过concatenate合并这些特征。
2.之所以用1x1,3x3,5x5的卷积是为了方便对齐,假设卷积核的步长为1,则只需pad=0、1、2,卷积之后便可得到相同维度的特征映射,就可以直接将他们拼接起来。
3.在该结构中还加入最大池化,最大池化作用的是之前层的输出,目的应该是提供转移翻转不变性。
4.在网络的较高层,特征越抽象,并且网络的感受野变大,所以通常3x3和5x5的卷积数量会增加,会引入大量的参数。当引入池化单元后,参数更多,因为输出滤波器的数量等于前一个阶段滤波器的数量,会导致不可避免的参数膨胀。
b
为了解决参数过多的问题,在Inception中引入了1x1的卷积。1x1的卷积有以下两个好处:
(1) 最重要的是1x1的卷积起到了维度衰减的作用,移除了计算瓶颈。假设原来Inception模块的输入特征映射为28x28x192,其中1x1卷积的通道数为64,3x3卷积通道数为128,5x5卷积通道数为32,则卷积核的参数为1x1x192x64+3x3x192x128+5x5x192x32,而在b结构中加入通道数为96和16的1x1卷积,则参数为1x1x192x64+(1x1x192x96+3x3x96x128)+(1x1x192x16+5x5x16x32),参数减少到了原来的1/3。
(2) 通常在1x1的卷积后面会引入一个非线性激活函数,也就是Relu,相当于引入了更多的非线性变换,提高了网络的表示能力。
GoogleNet
由图可知,Googlenet是由多个Inception模块堆叠而成,它的深度达到了22层,并且网络最后没有使用全连接层而是采用了平均池化层,这样做的好处是减少了参数,防止过拟合。并且为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传播梯度,在测试阶段这两个softmax会被移除。至于为什么不是在一开始就堆叠Inception模块,而是用几个卷积层加池化层是因为在网络的早期,输出的特征映射尺度通常很大,使用单独的卷积层和池化层能够降低特征映射的大小,减少参数,防止过拟合。
深度解读GoogleNet之Inception V1的更多相关文章
- 网络结构解读之inception系列二:GoogLeNet(Inception V1)
网络结构解读之inception系列二:GoogLeNet(Inception V1) inception系列的开山之作,有网络结构设计的初期思考. Going deeper with convolu ...
- GoogLeNet 之 Inception v1 v2 v3 v4
论文地址 Inception V1 :Going Deeper with Convolutions Inception-v2 :Batch Normalization: Accelerating De ...
- 深度学习面试题20:GoogLeNet(Inception V1)
目录 简介 网络结构 对应代码 网络说明 参考资料 简介 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名.VGG获得了第二 ...
- 论文阅读笔记四十二:Going deeper with convolutions (Inception V1 CVPR2014 )
论文原址:https://arxiv.org/pdf/1409.4842.pdf 代码连接:https://github.com/titu1994/Inception-v4(包含v1,v2,v4) ...
- 【转】CNN卷积神经网络_ GoogLeNet 之 Inception(V1-V4)
http://blog.csdn.net/diamonjoy_zone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with ...
- 从Inception v1,v2,v3,v4,RexNeXt到Xception再到MobileNets,ShuffleNet,MobileNetV2
from:https://blog.csdn.net/qq_14845119/article/details/73648100 Inception v1的网络,主要提出了Inceptionmodule ...
- 从GoogLeNet至Inception v3
从GoogLeNet至Inception v3 一.CNN发展纵览 我们先来看一张图片: 1985年,Rumelhart和Hinton等人提出了后向传播(Back Propagation,BP)算法( ...
- 我就是认真:Linux SWAP 深度解读(必须收藏)
我就是认真:Linux SWAP 深度解读(必须收藏) http://mp.weixin.qq.com/s?__biz=MzA4Nzg5Nzc5OA==&mid=2651660097& ...
- AI 新技术革命将如何重塑就业和全球化格局?深度解读 UN 报告(上篇)
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 张钦坤 腾讯研究院秘书长蔡雄山 腾讯研究院法律研究中心副主任祝林华 腾讯研究院法律研究中心助理研究员曹建峰 腾讯研究院法律研究中心高级研究员 ...
随机推荐
- SpringMVC(六):@RequestMapping下使用@RequestHeader绑定请求报头的属性值、@CookieValue绑定请求中的Cookie值
备注:我本地浏览器的报头(Request Header)信息如下: Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image ...
- jacascript DOM变动事件
前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! DOM变动事件 变动事件(MutationEvent)能在DOM中的某一部分发生变化时给出提示,这类事件非 ...
- MongoDB 分片集群搭建
一.概述 分片是一种在多台机器上分配数据的方法.MongoDB使用分片来支持具有非常大的数据集和高吞吐量操作.有两种解决系统增长的方法:垂直扩展和水平扩展. 垂直扩展涉及增加单个服务器的容量,例如使用 ...
- Spring-framework 源码导入 IntelliJ IDEA 记录
前言 想学习spring框架,不看源码怎么行.网上有很多教程,但是自己实施起来还是稍微有点坎坷的,不过最后还是成功了.遂以此文记录. 环境说明: Idea 2017.2.5 spring-frame ...
- [C#]设计模式-建造者模式-创建型模式
介绍完工厂模式,现在来看一下建造者模式.建造者模式就是将一系列对象组装为一个完整对象并且返回给用户,例如汽车,就是需要由各个部件来由工人建造成一个复杂的组合实体,这个复杂实体的构造过程就被外部化到一个 ...
- 部署上次的Hapi到Windows+Docker,WindowsDocker
前言: 理论的就不多说了,具体的架构看图.web这里是上篇文章开发的Hapi服务,数据库Mysql,废话不多说,粗略的画了下,架构图如下: Mysql镜像拉取,配置 数据库镜像查找 docker se ...
- python文件结构与import用法
首先上一张总结图: 在pycharm中,一般不会将当前文件目录自动加入自己的sourse_path.如果遇到无法import同级目录下的其他模块, 右键make_directory as-->S ...
- 各种电脑进入BIOS快捷键
组装机主板 品牌笔记本 品牌台式机 主板品牌 启动按键 笔记本品牌 启动按键 台式机品牌 启动按键 华硕主板 F8 联想笔记本 F12 联想台式机 F12 技嘉主板 F12 宏基笔记本 F12 惠普台 ...
- [Codeforces 919F]A Game With Numbers
Description 题库链接 两个人 Van♂ 游戏,每人手上各有 \(8\) 张牌,牌上数字均为 \([0,4]\) 之间的数.每个人在自己的回合选自己手牌中数字不为 \(0\) 的一张与对方手 ...
- SAC E#1 - 一道中档题 Factorial
题目背景 SOL君(炉石主播)和SOL菌(完美信息教室讲师)是好朋友. 题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. SOL菌表示不服 ...