这题显然把每个白格子看成一个子游戏

一个白格子$x$的$sg$值是$mex{[0,sg[2x],sg[2x] XOR sg[3x].....]}$

打表发现一个数的$sg$值只和$n/x$有关,然后分块乱搞就行了。

一开始开了个$map$,一直$TLE$,换成两个数组就过了。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <map>
#include <ctime>
#define N 100050
using namespace std;
bool bo[];
int n,m,T,sg1[N],sg2[N];
int getsg(int x){
int now=;
memset(bo,,sizeof bo);
int y=n/x;
for(int i=,j;i<=y;i=j+){
j=y/(y/i);
int sg=(i*x>m)?sg1[n/(i*x)]:sg2[i*x];
if((j-i+)&)now^=sg;
bo[now^sg]=;bo[now]=;
}
for(int i=;;i++)if(!bo[i])return i;
}
int tot;
int main(){
scanf("%d",&n);
m=sqrt(n);
for(int i=n,j;i;i=j-){
j=n/((n/i)+)+;
if(i>m)sg1[n/i]=getsg(i);
else sg2[i]=getsg(i);
}
scanf("%d",&T);
int num,ans;
while(T--){
scanf("%d",&num);ans=;
for(int i=,x;i<=num;i++){
scanf("%d",&x);
x=(x>m)?sg1[n/x]:sg2[x];
ans^=x;
}
if(ans)puts("Yes");
else puts("No");
}
return ;
}

bzoj4035 [HAOI2015]数组游戏的更多相关文章

  1. 【BZOJ4035】数组游戏(博弈论)

    [BZOJ4035]数组游戏(博弈论) 题面 BZOJ 洛谷 题解 很明显是一个翻硬币游戏的变形,因此当前局面的\(SG\)函数值就是所有白格子单独存在的\(SG\)函数的异或和. 那么,对于每一个位 ...

  2. 【BZOJ 4035】 4035: [HAOI2015]数组游戏 (博弈)

    4035: [HAOI2015]数组游戏 Time Limit: 15 Sec  Memory Limit: 32 MBSubmit: 181  Solved: 89 Description 有一个长 ...

  3. @bzoj - 4035@ [HAOI2015]数组游戏

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 有一个长度为N的数组,甲乙两人在上面进行这样一个游戏: 首先,数 ...

  4. [HAOI2015]数组游戏

    题目大意: 有一排n个格子,每个格子上都有一个白子或黑子,在上面进行游戏,规则如下: 选择一个含白子的格子x,并选择一个数k,翻转x,2x,...,kx格子上的子. 不能操作者负. 思路: 将“某个格 ...

  5. bzoj4035【HAOI2015】数组游戏

    题目描述 有一个长度为N的数组,甲乙两人在上面进行这样一个游戏:首先,数组上有一些格子是白的,有一些是黑的.然 后两人轮流进行操作.每次操作选择一个白色的格子,假设它的下标为x.接着,选择一个大小在1 ...

  6. 【LOJ】#2126. 「HAOI2015」数组游戏

    题解 简单分析一下就知道\(\lfloor \frac{N}{i} \rfloor\)相同的\(i\)的\(sg\)函数相同 所以我们只要算\(\sqrt{n}\)个\(sg\)函数就好 算每一个\( ...

  7. JZYZOJ1540 BZOJ4035 [ haoi2015 上午] T3 博弈论 sg函数 分块 haoi

    http://172.20.6.3/Problem_Show.asp?id=1540 之前莫比乌斯反演也写了一道这种找规律分块计算的题,没觉得这么恶心啊. 具体解释看代码. 翻硬币的具体方法就是分别算 ...

  8. 最浅谈的SG函数

    [更新] Nim游戏的经验: 每次最多取m个——%(m+1) 阶梯nim——奇数位无视,看偶数位互相独立,成一堆一堆的石子 . . . . 既然被征召去汇总算法..那么挑个简单点的SG函数好了.. 介 ...

  9. sg函数小结

    sg函数小结 sg函数是处理博弈问题的重要工具. 我们知道sg(x)=mex{sg(j)|x能到达状态j} sg(x)=0时代表后手赢,否则先手赢. 对于一个问题,如果某些子问题是相互独立的,我们就可 ...

随机推荐

  1. AI之微信跳一跳

    需要环境:1,Python3.6 2,android手机 3,ADB驱动,下载地址https://adb.clockworkmod.com/ 步骤: 配置Python3,ADB安装目录到环境变量pat ...

  2. JAVA程序员面试宝典

    程序员面试之葵花宝典 面向对象的特征有哪些方面    1. 抽象:抽象就是忽略一个主题中与当前目标2. 无关的那些方面,3. 以便更充分地注意与当前目标4. 有关的方面.抽象并不5. 打算了解全部问题 ...

  3. Jbpm工作流(一)

    了解一下什么是Jbpm及特点. jBPM,全称是Java Business Process Management,是一种基于J2EE的轻量级工作流管理系统.jBPM是公开源代码项目,它使用要遵循 Ap ...

  4. 一些Gym三星单刷的比赛总结

    RDC 2013, Samara SAU ACM ICPC Quarterfinal Qualification Contest G 思路卡成智障呀! Round 1:对着这个魔法阵找了半天规律,效果 ...

  5. Python2和Python3的差异

    之前做Spark大数据分析的时候,考虑要做Python的版本升级,对于Python2和Python3的差异做了一个调研,主要对于语法和第三方工具包支持程度进行了比较. 基本语法差异 核心类差异 Pyt ...

  6. 卸载重装Mysql

    卸载重装前请备份数据库 卸载 sudo apt autoremove --purge mysql-server-core-5.7 清理残留 sudo rm -r /var/lib/mysql* sud ...

  7. Spring系列(三):Spring IoC中各个注解的理解和使用

    原文链接:1. http://www.cnblogs.com/xdp-gacl/p/3495887.html       2. http://www.cnblogs.com/xiaoxi/p/5935 ...

  8. Java (六、String类和StringBuffer)

    Java String 类 字符串广泛应用 在Java 编程中,在 Java 中字符串属于对象,Java 提供了 String 类来创建和操作字符串. 创建字符串 // ==比较的是字符串在栈中存放的 ...

  9. 微信小程序-统一下单、微信支付(Java后台)

    1.首先分享 微信统一下单接口: https://pay.weixin.qq.com/wiki/doc/api/jsapi.php?chapter=9_1   微信接口 签名 对比网址: https: ...

  10. 读《图解HTTP》有感-(确保WEB安全的HTTPS)

    写在前面 该章节分析当前使用的HTTP协议中存在的安全性问题,以及采用HTTPS协议来规避这些可能存在的缺陷 正文 1.HTTP的缺点 1.1.由于HTTP不具备加密功能,所以在通信链路上,报文是以明 ...