BZOJ_2693_jzptab_莫比乌斯反演
BZOJ_2693_jzptab_莫比乌斯反演
Description
Input
一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M
Output
T行 每行一个整数 表示第i组数据的结果
Sample Input
4 5
Sample Output
122
HINT
T <= 10000
N, M<=10000000
$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)$
$=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\frac{i*j}{gcd(i,j)}$
$=\sum\limits_{p=1}^{n}\sum\limits_{i=1}^{\lfloor\frac{n}{p} \rfloor}
\sum\limits_{j=1}^{\lfloor\frac{m}{p} \rfloor} i*j*p*[gcd(i,j)=1]$
$=\sum\limits_{p=1}^{n}p\sum\limits_{i=1}^{\lfloor\frac{n}{p} \rfloor}
\sum\limits_{j=1}^{\lfloor\frac{m}{p} \rfloor} i*j
\sum\limits_{d|gcd(i,j)}\mu(d)$
$=\sum\limits_{p=1}^{n}p
\sum\limits_{d=1}^{n/p}\mu(d)*d^{2}
\sum\limits_{i=1}^{\lfloor\frac{n/p}{d} \rfloor}
\sum\limits_{j=1}^{\lfloor\frac{m/p}{d} \rfloor} i*j
$
设$s[n]=\sum\limits_{i=1}^{n}i$
$=\sum\limits_{p=1}^{n}p
\sum\limits_{d=1}^{n/p}\mu(d)*d^{2}*
s[\lfloor\frac{n/p}{d} \rfloor]*
s[\lfloor\frac{m/p}{d} \rfloor]
$
设$Q=d*p,先枚举Q$
$=\sum\limits_{Q=1}^{n}
s[\lfloor\frac{n}{Q} \rfloor]*
s[\lfloor\frac{m}{Q} \rfloor]
\sum\limits_{d|Q}\mu(d)*d^{2}*\lfloor\frac{Q}{d} \rfloor
$
设$f[n]=\sum\limits_{d|n}\mu(d)*d^{2}*\lfloor\frac{n}{d} \rfloor
=n\sum\limits_{d|n}\mu(d)*d$
$=\sum\limits_{Q=1}^{n}
s[\lfloor\frac{n}{Q} \rfloor]*
s[\lfloor\frac{m}{Q} \rfloor]*f[Q]
$
$然后发现f[n]=n*g[n],g[n]为 id卷\mu 的积性函数$
$我们可以处理出f[n]的前缀和,然后O(\sqrt{n})处理即可$
$mdlswl$
BZOJ_2693_jzptab_莫比乌斯反演的更多相关文章
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 莫比乌斯函数筛法 & 莫比乌斯反演
模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- POI2007_zap 莫比乌斯反演
题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- CSU 1325 莫比乌斯反演
题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...
随机推荐
- js常用 弹出确认 取消对话框
<!DOCTYPE html><html><head> <title></title> <meta charset='utf-8'&g ...
- Best Time to Buy and Sell Stock i
Say you have an array for which the ith element is the price of a given stock on day i. If you were ...
- 对DB2常见错误的列举以及破解方案
我们今天主要描述的是DB2常见错误还有正对这些错误的解决方案,以下就是文章对DB2常见错误还有正对这些错误的解决方案的主要内容的详细描述. 以下的文章主要是介绍DB2常见错误还有正对这些错误的解决方案 ...
- for循环嵌套讲解:
1.for循环嵌套讲解: class ForForDemo { public static void main(String[] args) { //大圈套小圈思想: ...
- 前端技术之_CSS详解第五天
前端技术之_CSS详解第五天 一.行高和字号 1.1 行高 CSS中,所有的行,都有行高.盒模型的padding,绝对不是直接作用在文字上的,而是作用在“行”上的. <!DOCTYPE html ...
- HttpContext未null处理
public static HttpContext Current { get { if (instance.Value == null) { instance = new ThreadLocal&l ...
- Modelsim中使用TCL脚本编写do文件实现自动化仿真
通常我们使用Modelsim进行仿真,是通过图形界面点点点来进行操作,殊不知Modelsim完美支持TCL脚本语言及批处理命令do文件.简单来说就是从你修改完代码后到你重新编译把需要的信号拉出来查看, ...
- Android 众多的布局属性详解
http://www.open-open.com/lib/view/open1328686184311.html Android功能强大,界面华丽,但是众多的布局属性就害苦了开发者,下面这篇文章结合了 ...
- hadoop 2.x安装:完全分布式安装
1. 安装环境 本文使用三台CentOS6.4虚拟机模拟完全分布式环境.前五个过程和hadoop1.x安装相同 1.1. 安装环境 项目 参数 主操作系统 Windows 10 64 bit,8GB内 ...
- 数据准备<3>:数据预处理
数据预处理是指因为算法或者分析需要,对经过数据质量检查后的数据进行转换.衍生.规约等操作的过程.整个数据预处理工作主要包括五个方面内容:简单函数变换.标准化.衍生虚拟变量.离散化.降维.本文将作展开介 ...