BZOJ_2693_jzptab_莫比乌斯反演

Description

Input

一个正整数T表示数据组数

接下来T行 每行两个正整数 表示N、M

Output

T行 每行一个整数 表示第i组数据的结果

Sample Input

1

4 5

Sample Output

122

HINT
T <= 10000

N, M<=10000000


$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)$

$=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\frac{i*j}{gcd(i,j)}$

$=\sum\limits_{p=1}^{n}\sum\limits_{i=1}^{\lfloor\frac{n}{p} \rfloor}
\sum\limits_{j=1}^{\lfloor\frac{m}{p} \rfloor} i*j*p*[gcd(i,j)=1]$

$=\sum\limits_{p=1}^{n}p\sum\limits_{i=1}^{\lfloor\frac{n}{p} \rfloor}
\sum\limits_{j=1}^{\lfloor\frac{m}{p} \rfloor} i*j
\sum\limits_{d|gcd(i,j)}\mu(d)$

$=\sum\limits_{p=1}^{n}p
\sum\limits_{d=1}^{n/p}\mu(d)*d^{2}
\sum\limits_{i=1}^{\lfloor\frac{n/p}{d} \rfloor}
\sum\limits_{j=1}^{\lfloor\frac{m/p}{d} \rfloor} i*j
$

设$s[n]=\sum\limits_{i=1}^{n}i$

$=\sum\limits_{p=1}^{n}p
\sum\limits_{d=1}^{n/p}\mu(d)*d^{2}*
s[\lfloor\frac{n/p}{d} \rfloor]*
s[\lfloor\frac{m/p}{d} \rfloor]
$

设$Q=d*p,先枚举Q$

$=\sum\limits_{Q=1}^{n}
s[\lfloor\frac{n}{Q} \rfloor]*
s[\lfloor\frac{m}{Q} \rfloor]
\sum\limits_{d|Q}\mu(d)*d^{2}*\lfloor\frac{Q}{d} \rfloor
$

设$f[n]=\sum\limits_{d|n}\mu(d)*d^{2}*\lfloor\frac{n}{d} \rfloor
=n\sum\limits_{d|n}\mu(d)*d$

$=\sum\limits_{Q=1}^{n}
s[\lfloor\frac{n}{Q} \rfloor]*
s[\lfloor\frac{m}{Q} \rfloor]*f[Q]
$

$然后发现f[n]=n*g[n],g[n]为 id卷\mu 的积性函数$

$我们可以处理出f[n]的前缀和,然后O(\sqrt{n})处理即可$

$mdlswl$

BZOJ_2693_jzptab_莫比乌斯反演的更多相关文章

  1. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  2. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  3. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  4. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  5. 莫比乌斯函数筛法 & 莫比乌斯反演

    模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...

  6. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

  7. POI2007_zap 莫比乌斯反演

    题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...

  8. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  9. CSU 1325 莫比乌斯反演

    题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...

随机推荐

  1. 细说Web页面与本地电脑通讯

    话说在很久很久以前.Web页面与客户的本地电脑Localhost通讯,有两种方式: 1.Flash 2.ActiveX控件 由于Flash本人不是很了解,也给出不了什么示例代码, 对于ActiveX控 ...

  2. List集合中元素排序

    应用场景: 在开发中经常遇到要对List<Object>集合进行排序,并且是根据集合中的对象的某个属性来进行排序    --------以下就此做出的解决方案 public static ...

  3. jquery选择器项目实例分析

    首先废话一句,jQuery选择器真心很强大!  在项目中遇到这么一个问题easyui的问题 如图所示,当前页面显示的是"原始报文查询"的页面,当时左侧导航栏却选中的是"重 ...

  4. nslookup查询结果详解

    nslookup可以指定查询的类型,可以查到DNS记录的生存时间还可以指定使用那个DNS服务器进行解释.在已安装TCP/IP协议的电脑上面均可以使用这个命令.主要用来诊断域名系统 (DNS) 基础结构 ...

  5. 实现CString的Format功能,支持跨平台

    #include <string>#include <stdio.h> #include <stdarg.h> std::string& std_strin ...

  6. 使用AngularJS开发中的几个问题

    1.AngularJS的模板绑定机制好像和其$http服务也有一定关系,如果用jQuery Ajax的返回值赋给$scope的作用域变量,整个绑定显示的节奏慢一个事件,神器果然麻烦啊. 2.对hidd ...

  7. 关于JavaScript的那些话

    1.初学者动手环境----推荐Chrome的控制台(F12调用)2.JS中两个非常重要的数据类型是对象和数组.3.JavaScript 程序是用Unicode字符集编写的.4.JavaScript是区 ...

  8. Hadoop的多节点集群启动,唯独没有namenode进程?(血淋淋教训,一定拍快照)(四十五)

    前言 大家在搭建hadoop集群时,第一次格式化后,一路要做好快照.别随便动不动缺少什么进程,就来个格式化. 问题描述:启动hadoop时报namenode未初始化:java.io.IOExcepti ...

  9. JavaScript路线

    看到知乎上有大神回答的,感觉很不错,分享下 首先要说明的是,咱现在不是高手,最多还是一个半桶水,算是入了JS的门. 谈不上经验,都是一些教训. 这个时候有人要说,“靠,你丫半桶水,凭啥教我们”.您先别 ...

  10. SQLServer 导入大脚本文件

    1.cmd 你懂的 2.这里呢得引入一下OSQL,先看看帮助文档:osql -? 3.osql -E -i C:\Users\DNT\Desktop\BigValues.sql-E 表示使用 Wind ...